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1 Matrix Calculus

Row v.s. Column Vector Our default rule is that every vector is a column vector unless explicitly stated
otherwise.

This is also known as the numerator layout.

Special case: For f:R®™ — R, Df is a 1 X n matrix or row vector.

1.1 Matrix Multiplication

Definition 1.1.1 Let A be m x n, and B be n x p, and let the product AB be
C=AB

then C'is a m X p matrix, with element (i, 7) given by
n
Cij = Zaikbkj
k=1
foralli=1,2,...,m,5=1,2,...,p.

Proposition 1.1.2 Let A be m x n, and x be n x 1, then the typical element of the product

z = Ax
is given by
n
Zp = Z AikTk
k=1

foralli=1,2,...,m.

Similarly, let y be m x 1, then the typical element of the product

I =yTA
is given by

n

T

Zp = E Ak Yk
k=1

foralli=1,2,...,n.
Finally, the scalar resulting from the product
a=y Az

is given by
n

m
o= Z Z ajkYiTk

j=1 k=1

1.2 Partitioned Matrices

Proposition 1.2.1 Let A be a square, nonsingular matrix of order m. Partition A as

App A

4= [Azl AQJ
so that A1 and Agy are invertible.
Then

A1 — (A1 — A12A5) Axy) ™! — A Ara(Agg — At AT Agp)
—A§21A21(A11 — A12A§21A21)_1 (A2 — A21Af11A12)_1
proof:
Direct multiplication of the proposed A~! and A yields
AT'A=T
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1.3 Matrix Differentiation

Proposition 1.3.1

0A 0AT
or  Ox
Proposition 1.3.2 Let
y = Ax

where y is m x 1, z is n x 1, A is m x n, and A does not depend on x. Suppose that x is a function of the
vector z, while A is independent of z. Then

oy ox

A e

0z 0z
Proposition 1.3.3 Let the scalar a be defined by

a=ylAx

where y ism x 1, x isn x 1, Ais m X n, and A is independent of x and y, then

da
o TA
ox y
and 9
«Q T AT
———2Ta
dy v

Proposition 1.3.4 For the special case where the scalar « is given by the quadratic form
a=z" Az

where £ isn x 1, A is n x n, and A does not depend on x, then

oo T T
— = A+ A
o ' (A+ A7)

proof:
By definition

n n

o = E E aijxixj

j=1i=1
Differentiating with respect to the kth element of x we have

n

n
o
O 2 WiTT + § AikT;
k 1 i—1

for all k =1,2,...,n, and consequently,
foJe

i T AT 4 2T A = 2T(AT + A)

Proposition 1.3.4 For the special case where A is a symmetric matrix and
o=zl Ax

where z isn x 1, A is n x n, and A does not depend on z, then

Oa T
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Proposition 1.3.5 Let the scalar a be defined by

a=y'z

where y is n x 1, x is n x 1, and both y and x are functions of the vector z. Then

90 _ pdy , o0
62_90 0z yaz

Proposition 1.3.6 Let the scalar a be defined by
a=x
where z is n x 1, and x is a functions of the vector z. Then

O _ 9T Oy
Dz 0z

Proposition 1.3.7 Let the scalar a be defined by
a =yl Az

where y is m x 1, Ais m x n, x is n X 1, and both y and z are functions of the vector z, while A does not

depend on z. Then
ox

604 TAT6y+ T 49%
z 0z

9z 0

Proposition 1.3.8 Let A be an invertible, m x m matrix whose elements are functions of the scalar parameter
«. Then

0A~! 0A
=—At—at
oo toJe
proof:
Start with the definition of the inverse
A'A=1
and differentiate, yielding
0A 0A7!
A A=0
Do + roJe}
rearranging the terms yields
0A~! 0A
=-—At—At
da oa
|
Vector-by-vector Differentiation Identities 1.3.9
Young’s Theorem 1.3.10 i.e. Symmetry of second derivatives
[Vay f(z, Z/)]T = Vyaf(2,y)
proof:
This is straightforward by writing out the elements of the matrix. |

2 Second-year Calculus Review

functions R — R



Condition Expression . T layout, i.e. by yT
i.e. by y and x
and x
) ) da
a is not a function of x —_— =
ox
ox _
5
A is not a function of x 8A_x = A AT
ox
T
A is not a function of x ox A = AT A
ox
ais not a function of x, 30,_11 _ B_u
u = u(x) ax ox
v = v(X), U =u(x) @ = v@ + ua— v% + —'UuT
R ox ox | ox ox  Ox
A is not a function of x, 0Au B A@ 6_uAT
u = u(x) ox ox ox
u = u(x), v =v(x) M = 8_u @
ox ox 0Ox
— og() | dg(w)ou | ouds(w)
ox ou Ox ox Ou
0 = u() of(g(u)) | Of(g) 9g(u) du | du dg(u) Jf(g)
B ox | g Ou 0x 0x Ou og
2.1 Mean Value Theorem in 1 Dimension
geCtonR
h) —
where 0 € (0,1)
Or equivalently,
g(x + h) = g(x) + hg'(x + Oh)
2.2 1st Order Taylor Approximation
geC'onR
g(x +h) = g(z) + hyg'(x) + o(h)
where o(h) is “little 0” of h, the error term.
Say a function f(h) = o(h), this means hm f( ) =
For example, for f(h ) = h?, we can say f( ) o(h),
since hmf(hh) =lim% = limh =0
h—0 h—0
proof: (Use MVT):
WTS : g(x + h) — g(z) — hg'(z) = o(h)
— _ / / _ ’
Lol h) — g(e)] ~ hg'(x) . [hg'(x + 6)] — hg'(2)
h—0 h h—0 h
= lirn g’(x +60h) — ¢ ()

SECOND-YEAR CALCULUS REVIEW

Numerator layout,

Denominator

= hmg( ) —g'(x)

h—0
=0



2 SECOND-YEAR CALCULUS REVIEW 7

[ |
2.3 2nd Order Mean Value Theorem
geC?onR
h2
g(@+h) = g(z) + hy'(x) + 5-g'(z + 0h)
for some 6 € (0,1)
proof:
WTS: gz + h) — g(z) — hg'(z) — 5 g"(z) = o(h?)
gl h) —g(e) — hg'e) = Bg'() (B +0n) - Eg'(@)
h—0 h2 h—0 h?
T 1 i /i
= lim ~(g"(z +0h) — '(2)
s 1 i "
= lim 2 (¢"(x) ~ "))
[ |

multivariate functions: R® — R

2.4 Recall: Definition of gradient

Gradient of f: R"™ — R at 2 € R" (denoted V f(x)) if exists is a vector characterized by the property:

fx+v) - fx) -Vix)-v

lim =0
v—0 [[v]|
. . _ 1 0f of
In Cartesian coordinates, Vf(x) = (5 (x), ..., 5:-(x))

2.5 Mean Value Theorem in n dimension

f € C' on R”, then for any x,v € R",
fx+v)=f(x)+Vf(x+6v) v
for some 6 € (0,1)

proof: Reduce to 1-dimension case
g(t) == f(x+tv),teR

g'(t)= %f(er tv)
B Z 1 gi- (et ) - 25 ;tv)z (by Chain Rule)
- 88){1' (x+ tv) d(xi;tvl)
= g}{i(x+tv) Vi

=Vf(x+tv)-v (*)
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geC'onR
Using MVT in R:
fx+v)=9(1)
=9(0+1)
=g(0) + 1¢'(0 + 61) (6 €(0,1))
=9(0) +4'(0)
=f(x)+Vf(x+0v) v (by (%))
|
2.6 1st Order Taylor Approximation in R"
feCon R
fx+v)=f(x)+Vf(x) v+o(|v]])
proof:
fx+v) - f)-VIx)-v _ Vix+6v) -v]-Vix) v
[[vl|—0 gl [Ivii—0 vl
- I Ov) — .V
il F O 8 = VIl i
=0 (ﬁ is a unit vector, remains 1)
|

2.7 2nd Order Mean Value Theorem in R"

feC?onR?
f(x+v)=f(x)+Vf(x) v+ %VTVQf(X-f-OV)-V

Remarks In this course, V? means Hessian, not Laplacian.

2 (P _
Vi) = <8Xiaxj>1§i,j§n () = 82.81

The Hessian matrix is symmetric. This is sometimes called Clairaut’s Theorem.
2

0
note: vI'V2f(x)v = di<ij<n Waj;jf(x)vivj

2.8 2nd Order Taylor Approximation in R"
feC?onR"

fx+v)=fx) +Vf(x) v+ %VTVQJ”(X)V +o(|[vIP)
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proof:

O +v) = F00) = VI(X) v = JVIVGOv L VIV 4 0v) V] = JvIVRF(0) v

1m —
[Iv]|=0 [[v]]? [v]|=0 [[v]]?

(By 2nd MVT)

1 v
lim V2f(x+0v) — V2 f(x)](—
HvH—>02(HVII) [VZf( ) I )](||V||)
=0
|
2.9 Geometric Meaning of Gradient
f:R* SR
Rate of change of f at x in direction v (||v|| =1) = dt|t of(x+tv)
d
E ]t:()f(x + tV) (X + tV) V‘t:()
=Vf(x)-v
= |V f(x)||v|cosé
= [V (x)|cos 0 (vl = 1)

maximized at 6 = 0
So V f(x) points in the direction of steepest ascent.

2.10 Implicit Function Theorem

fiR™ S ReC!
Fix (a,b) € R" x Rs.t. f(a,b) =0.
If Vf(a,b) # 0, then {(x,y) € (R" x R)|f(x,y) = 0} is locally (near (a,b)) the graph of a function.

2.11 Level Sets of f
c-level set of f := {x € R"|f(x) = ¢}

Fact gradient V f(x¢) L level curve (through xq)

3 Convex Sets & Functions

3.1 Definitions

Definition of Convex Set € C R" is a convex set if X1, X2 € Q = sx1 + (1 — s)x2 €  where s € [0, 1]

Definition of Convex Function A function f : convex Q2 C R"” is convex if

fsx1+ (1 = s)x2) < sf(x1) + (1 — 5)f(x2)

for all x;,x2 € Q and all s € [0, 1]
Remarks Second line above (or equal to) the graph

Definition of Concave Function A function f is concave if — f is convex.



3 CONVEX SETS & FUNCTIONS 10

3.2 Basic Properties of Convex Functions

Let Q C R™ be a convex set.
1. f1, fo are convex functions on €2 = f; + f2 is a convex function on 2.
2. f is a convex function, a > 0 = af is a convex function.

3. f is a convex function on € = The sublevel sets of f, SL. := {x € R"|f(x) < ¢} is convex.

proof of (3):
Let z1,29 € SLc, so that f(x1) < cand f(z2) <ec.
WTS: sz + (1 — s)xz € SL. for any s € [0, 1]

f(sz1+ (1= 8)xe) <sf(x1)+ (1 —s)f(z2) (f is convex)
<sc+(1—-s)c

= sz1+ (1 — s)xe € SL,

|
Example of a convex function Let f:R — R, f(z) = |z|
Let z1,29 € R, s € [0, 1]
Then
f(sz1+ (1= 8)xe) = |sxy + (1 — s)x2]
<|szi|+ |(1 — s)x2| (by Triangle Inequality)

= slz1| + (1 = )22

=sf(z1) + (1 —s)f(x2)

Then f is a convex function.

Theorem - Characterization of C' convex functions Let f : convex subset of R” Q@ — R be a C!
function.

Then,
fis convex <= f(y) > f(z)+ Vf(z)  (y—x) for all z,y € Q

Remarks Tangent line below the graph.

proof:
(=)
f is convex, then by definition,

flsxi+ (1 = s)x2)

f(sx1+ (1 —s)x2) — f(x2)
f(sx1 4+ (1 = s)x2) — f(x2)

. < f(x1) = f(x2)
gi_If(l)f(xz + s(x1 ;X2)) — f(x2) < f(x1) — f(xa)
Vf(x2) - (x1 = x2) < f(x1) = f(xa)  (since f|s=of(x2 + s(x1 — x2)) = Vf(x2) - (x1 — x2))
f(x2) + Vf(x2) - (x1 —x2) < f(x1)
f)+ Vi) -(y—x) < f(y)
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where 0 < s <1

(<)

Fix x¢,x1 € Q and s € (0,1)
Let z = sxg + (1 — s)x3

f(x0) > f(x)+ Vf(x)-(x0—x)

= f(x) + Vf(x) (1 —s)(xo—x1)
f(x1) > f(x)+Vf(x):(x1—x)

= f(x) + Vf(x) - s(x1 — %)

Then

Then f is convex. |

3.3 Ciriterions for convexity

C! criterion for convexity
f:Q—=Risconvex <= f(y) > f(z)+Vf(x) (y—x)

for all x,y € Q

Theorem: C? criterion for convexity Let f € C? on Q C R" (here we assume Q C R” is a convex set
containing an interior point)
Then

f is convex on Q <= V2f(z) >0

for all x € Q)
Remark 1 Let A be an n X n matrix.

“A > 0” means A is positive semi-definite:
vl Av >0

for all v € R™
Remark 2 In R,

fis convex <= f'(z)>0
for all x €

(“concave up” in first year calculus)

proof for Theorem:
Recall 2nd order MVT:

Fly) = @) + V(@) - (g = ) + 5y~ 2) VS (o + s(y — 2) - (s — 2)

for some s € [0, 1]
(<)
Since V2f(z) > 0, then

S =2 V(4 sy — ) - (y— ) > 0
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Then
fy) = f(@) + V() (y— =)

for all x,y € Q.
Then by C! criterion, f is convex.
(=)
Assume f is convex on ().
Suppose for contradiction that V2 f(x) is not positive semi-definite at some x € €.
Then Jv # 0 s.t. vT'V2f(2)v < 0 v could be arbitrarily small and > 0
Let y = x + v, then
(y =)'V f(z+s(y—2))-(y—x) <0

for all s € [0, 1]
Then by MVT,

fly) < flx)+Vf(z)- (y —x)

for some x,y € 2, and this contradicts the C! criterion.

3.4 Minimization and Maximization of Convex Functions

Theorem f: convex 2 C R™ — R is a convex function.

Suppose I' := {z € Q| f(z) = ms%nf(:c)} #0

(i.e. minimizer exists)

Then I' is a convex set, and any local minimum of f is a global minimum of f.
proof:

Let m = ménf(m)
I'={z e Q[f(z) =m} ={z € Q|f(z) <m}
(sublevel set)
Then by Basic Properties of Convex Sets, I' is convex.
Let z be a local minimum of f.

Suppose for contradiction that Jy s.t. f(y) < f(x)
(i.e. x is not a global minimum)

for all s € (0,1)

As s approaches 0, s approaches .

Then we have lin(l)f(sy + (1 —9)x)=f(x) < f(x).
S—>

which is a contradiction.

Theorem If f: ) CR"™ — R is a convex function, and €2 is convex and compact, then

maxj] = max
Q f o0 f

Remarks Maximum value of f is attained (also) on the boundary of Q

proof:
Since € is closed, 992 C 2, so mgezle > négxf.

Suppose f(zg) = max f for some xy ¢ 0S). Let L be an arbitrary line through xg.

12

(f(y) < f(x))
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By convexity and compactness of 2, L, meets 02 at two points x1, zo.
Let zp + sz1 + (1 — s)xg for s € (0,1)

f(xo) = f(sz1 + (1 — s)x2)
< sf(z1) + (1= s)f(22) (f convex)
< max{ f(x1), f(r2)}
< e

< mng = f(xo)

This implies that

maXx | = max
Q f o0N f

as wanted. [ |

Example

1 1
|ab] < —[al” + —[b]*
p q

where p,q > 1 s.t. %4—%:1.
Special cases:
1. ) )
b
p=q=2lab < M
> 3 1 2
p=3.q=3.lab| < Zla’ + Z[bJ2
proof:
Since function f(z) = —log(x) is convex, then
(—log)|ab| = (—log)lal + ( log)lb\
1
];( log)lal” + — ( log)|[b|?
1
log)(=lal? + —|b|
> (= )(p! | ql )

1 1
(—log)ab| = (—log)(z—)!a\p + 5\5\(1)

log |ab] < 10g( |af” + |b|‘1)
lab| < —|a]p + —|b|? (exponential function is increasing)
p q

4 Basics of Unconstrained Optimization

4.1 Extreme Value Theorem

Suppose f : R™ — R is continuous, and compact set K C R™ Then the problem

min f(z)

zeK

has a solution.
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Recall
1.
K CR" compact < K closed and bounded
2. If hy,...,ht and g1, ..., gm are continuous functions on R™, then the set of all points z € R" s.t.

hi(z) =0 for all i
gj(x) <0 for all j

is a closed set.

3. If such a set is also bounded, then it is compact.

Example

{(z,y) € R*2® +¢° —1=0}
by (2), this is a closed set
by (3), this is a compact set.

Remarks f:Q CR"” — R convex does not imply f is continuous.

4.2 Unconstrained Optimization

min f(x)
zeQCR"”

typically
1. QCR"
2. Q=R"

3. 2 = open

4. Q) = open

Remark

1. max f(z) = —(min — f(x))
2. min f(x) = —(max — f(z))

Definition: local minimum We say that f has a local minimum at a point ¢ € € if

f(xo) < f(x)

for all z € Bg(xg), where Bg(xg) = {x € Q : |x — 20| < e} which is an open ball around z inside Q2 of radius
e >0.
We say that f has a strict local minimum at a point zg € §2 if

f(xo) < f(2)

for all x € Bg(xo) \ {zo}
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4.3 1st order necessary condition for local minimum

Theorem Let f be a C'! function on Q C R™. If 2y € Q is a local minimum of f, then
Vi(xg) -v>0

for all feasible directions v at xg

Definition: feasible direction v € R" is a feasible direction at zg € € if

o+ sv € Q

for all 0 < s < 5 where s € R
Remarks Feasible directions go into the set.

Corollary Special case: If 2 = R™ is an open set, then any direction is a feasible direction. Then z is a local
minimum of f on Q implies that V f(zg) - v > 0 for all v € R™.

{Vf(:no)-v >0

Vf(zg) (—v) >0 <= Vf(zg) v<0 = Vf(zg)-v=0forallveR

= Vf(zo) =0

|
4.4 2nd order necessary condition for local minimum
feC?QCRrR?
If ¢ € ©Q is a local minimum of f on €2, then
1. Vf(zo) - v > 0 for al feasible directions v at z
2. If Vf(xq)-v =0, then vTV2f(2¢)v > 0 (function curves up)
|

Remark If z( is an interior point of €2, then
Vf(zo) =0, VQf(m()) >0

f(x0) =0, f"(z0) >0

Definition: principal minor Let A be an n X n matrix. A k x k submatrix of A formed by deleting n — k
rows of A, and the same n — k columns of A, is called principal submatrix of A. The determinant of a principal
submatrix of A is called a principal minor of A.

Definition: leading principal minor Let A be an n x n matrix. The kth order principal submatrix of A
obtained by deleting the last n — k rows and columns of A is called the k-th order leading principal submatrix
of A, and its determinant is called a leading principal minor of A.

Definition: positive definiteness (Sylvester’s Criterion) A n x n matrix A is

1. positive definite if vT Av > 0 for all v £ 0 <= all eigenvalues > 0 <= all leading principle minors > 0

2. positive semi-definite if vZAv > 0 for all v <= all eigenvalues > 0 <= all principle minors > 0
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Lemma Suppose V2f(xg) is positive definite, then

Ja > 0 s.t. vIV2f(xo)v > aljv|* Vo

4.5 2nd order sufficient condition (for interior points)

feC?on
=0
If VQf(ZL’o) , then zg is a strict local minimum.
Vef(xo) >0

5 Optimization with Equality Constraints

5.1 Definitions of Related Spaces

Definition 5.1.1: surface
M = “surface” = {z € R"|hi(x) =0,...,hi(z) =0}

where h; € C!

Definition 5.1.2: differentiable curve on surface A differentiable curve on surface M C R" is a C!
function

x:(—€,€) > M:s— x(s)

Remarks

1. Let z(s) be a differentiable curve on M that passes through zy € M, say z(0) = zo. The vector
v = d%] s=02(0) touches M “tangentially”. We say v is generated by x(s).

2. In previous calculus courses, differentiable curves are often referred to as parameterizations.

Definition 5.1.3: tangent vector Any vector v which is generated by some differentiable curve on M
through zq is called a tangent vector.

Definition 5.1.4: tangent space Tangent space to the surface M at point xg is

d
T, M = {all tangent vectors to M at xo} = {v e R" : v = d—|5:o x(s)}
s

where z(s) is a differentiable curve on M s.t. z(0) = zo
Remarks The zero vector is contained in all tangent spaces.

Definition 5.1.5: T-space

Tpy ={x €eR": xTVhl-(mo) =0Vi} = Span{Vhi(xg),..., Vh;g(fno)}L

Definition 5.1.6: regular point x9 € M is a regular point (of the constraints) if {Vhi(zg),....Vhg(zo)}
are linearly independent.

Remark If there is only one constraint h, then zg is regular if and only if Vh(xo) # 0.
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When does the T-space equivalent to the tangent space? When 1z is a regular point (of the con-
straints).

Theorem 5.1.7 Suppose xg is a regular point s.t. M = {x € R : h;(x) = 0Vi}. Then

TpyM =Ty,

Lemma 5.1.8 f,hy,...,ht € C' on open Q2 C R”
M ={x e R": h;j(x) = 0Vi}
Suppose xg € M is a local minimum of f on M, then

Vf(zo) L TpyyM <= Vf(xg) - v=0
for all v € T, M

5.2 Lagrange Multipliers: 1st order necessary condition for local minimum

f hi,...,hy € C" on open Q C R™.
Let z¢ be a regular point of the constraints M = {x € R" : hj(z) = 0Vi}.
Suppose xg is a local minimum of f on M, then I\, ..., A\ € R s.t.

Vf(zo) + MiVhi(zo) + ... + A Vhy(20) =0
Proof. xg regular implies that
TpoM =Ty, = Span{Vhi(xg),... ,th(xo)}L
By Lemma 5.1.8, xg is a loc min implies that

Vf(xog) L TpyM

Then
Vf(xo) € (TeyM)* = Span{Vh;(z0)}**+ = Span{Vh;(xo)}
Then
Vf(zo) = =MVhi(zo) — ... — A Vhy(20)
for some \; € R [ |

5.3 2nd order necessary condition for local minimum

f hi,...,hy € C? on open Q C R™.
Let z¢ be a regular point of the constraints M = {x € R" : h;j(x) = 0Vi}.
Suppose xg is a local minimum of f on M, then

1.
k
Vf(xo) + Z )\@Vhl(.’l,‘o) =0

i=1
for some \; € R

VQf(l‘o) -+ Z )\Z'VQhZ'(ZL'o) >0
on 1,,M
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5.4 2nd order sufficient condition for local minimum

f,hi,...,hi € C? on open 2 C R™.
Let 2 be a regular point of the constraints M = {z € R™ : h;(x) = 0Vi}.
If 9\ € R s.t.

1.
Vf(zo) + Y AiVhi(zo) =0

VQf(x0> + Z )\Nth(a:O) >0
on T, M

Then zg is a strict local minimum.

Proof. Recall that (2) means [V2f(xg) + 3 \ihi(z0)] is pos-def on Ty, M.
Then Ja > 0 s.t. vT[V2f(20) + X Aihi(wo)]v > al|v||? for all v € T,,) M.
Let z(s) € M be a curve s.t. x(0) = zg and v = 2/(0).

WLOG, [|2/(0)]] = 1.

By 2nd order Taylor,

F(a(s)) ~ Fla(0)) = sd%s:of(x(s» 3 dd2 oo (a(5)) + of )
_si’so +Zx\h 12d’30 -l-Z/\h

1
=0+ 55”0 [V f(20) + D AiVPhi(zo)Jv + o(s”)
> Lol + ofs?)

1
= 552(1 + o(s?)

for small s > 0, since 2 im ( °) =0

Then f(z(s)) > f(xo) for small s > 0 Then xo is a strict local min of f.

6 Optimization with Inequality Constraints

Problem open Q CR"
f: Q=R
hi,....,htz : Q2 —=>R
g1,--~,gziQ—>R

min f(x)
: hy
x € Q subject to

+o(s?)

(22 Aihi(z(s)) =
= s[Vf(z0) + > _ \iVhi(xo)] - 2/ (0) + %SQx’(O)T[sz(a:o) + ) " AiV2hi(0)]a' (0) + ofs?)

18
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Definition 1: activeness Let z( satisfy the constraints.
We say that the constraint g;(z) < 0 is active at x¢ if g;(zo9) = 0.
It is inactive at zg if g;(z¢) < 0.

Definition 2: regular point Suppose for some I’ < [:

91(z) <0,...,gr(x) < 0; gria(2) <0,...,q(x) <0

where g1, ... gy active and the rest inactive.
We say that zq is a regular point of the constraints if
{Vhi(x0),...,Vhi(zo), Vg1 (o), .., Vgr(zo)} is linearly independent.

6.1 Kuhn-Tucker conditions: 1st order necessary condition for local minimum

open 2 CR"

f: Q=R

hi,y... b gy, g : CteQ

Suppose xg € () is a regular point of the constraints which is a local minimum, then

1.
k l
V f(xo) + E AiVhi(xo) + E 1iVgi(xzo) =0

i=1 j=1
for some \; € R and p1; > 0

2. pigi(zo) =0
Remark 1 Given z,

gj(z) <0 active at 9 = g;(x0) =0 = p;gj(z9) =0
gj(x) <0 inactive at zg = gj(z9) <0 = p; =0

= p;j = 0 for all inactive g; at g
Remark 2 It is possible for an active constraint to have zero multiplier.
Remark 3 p; > 0 because V f and Vg have opposite directions at a local minimum .

Vf(zo) + nVyg(xo) =0 = Vf(x0) = —pVg(zo) = —p<0 = p>0

Is this true?

Idea of proof =z is a local min of f subject to (*)

= x¢ is a local min for equality constraints hy(z) = 0,..., hi(x) = 0+ active inequality constraints g;(z) <
0,...,9r(x) <0

— g is a local min for hy(z) =0,..., hy(z) =0+ gi1(x) =0,...,g90(x) =0 = Vf(xo)+ %, \iVhi(zo) +
Sy 1 Vg;(x0) = 0

for some A\; € R and p; € R.

Let puj =0 for j =1"+1,...,1, then

k l

Vf(zo) + Y AiVhi(zo) + Y 1;Vg;(we) =0
i—1 =1
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6.2 2nd order necessary conditions for local minimum
Open Q CR”, f,hi,...,hi,q1,...,9 € C?. Let 2y be a regular point of the constraints:

hi(x) =...=hg(zo) =0
(1) {gl(:c), e gi(xo) <0

Suppose g is a local min of f subject to (). Then, I\; € R, p; > 0 s.t.

L V(o) + 3011 AiVhi(zo) + Xjy #5V95(%0) = 0
2. pjgj(xg) =0 for all j

3. [V2f(20) + 3 N\iV2hi(mo) + Y 1 V2gn(wo)]] is positive semi definite on tangent space to active constraints
at xp.

Proof. xo local min for (})
= 1z local min for only active constraints at xg.

hi (.CC) =0V
—
gj(x)=05=1,...,U
= [V2f(20) + > \iV2hi(x0) + 3 11;V%gn(x0)] pos semi def on tangent space to active constraints. [ ]

6.3 2nd order sufficient conditions

Open Q CR", f, h;, g5 € C? on Q.

Problem:
min f(zx)
hi(x) =0
subject to (z)
g9j(x) <0

Suppose Jxg feasible and A;, p1; € R s.t.
1. Vf(xo)+ Zi-c:l A\iVhi(z) + Zé‘zl 1iVgi(zg) =0
2. 1yg;(x0) = 0 all j

If the Hessian matrix, L(zg) = V2 f(z0) +Zf:1 \i V2 f (o) +Z§:1 11;V2g;(x) is pos def on Ty, -space of “strongly
active” constraints at xg.
Then zg is a strict local min.

Remarks
1.
. . hi(x)=0 i=1,...,k
Active constraints at xg
g].rg(] J =1, al,:g](l‘O)_O

2.

. . hi(a:):o 1= ,...,k‘

Strongly active constraints at xg ) " . .
gi(z) <0 j=1,...,1" gj(z) is active at xy and p; >0
l” S l/ S l

3.

Tuo = {v € R™|v - Vhi(20) =0 all i and v - Vg;(xg) =0 forall j =1,...,1"}
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4. strongly active C active

— T, = (strongly active)® D (active)t = Tp,

Proof. (details see another pdf by prof) Suppose xg is NOT a (strict) local min.
claim: 3 unit vector v € R s.t.

1. Vf(zg)-v<0
2. Vhi(l’o)"l)zo i=1,...,/€
3. Vgj(zg) - v<0 j=1,...,0

proof of claim: ]

claim: Vgj(z)-v=0for j =1,...,0"
proof of claim: ||

= contradiction!

claim: 3 unit vector v € R s.t.

1. Vf(zg)-v<0
2. th'(l'o)'v:() i=1,...,/€
3. Vgj(zg) - v=0 j=1,...,1"

proof of claim: ] [

7 Different Computation Methods for Solving Optimum

7.1 Newton’s Method

xo € I start )
Tn4+1 = Lo — J{N((TE((J)))

Theorem Let f € C?on I.
Suppose z, € I satisfies f'(z,) =0 and f”(x,) # 0 (2, is a non-degenerate (non-singular) critical point).
Then the sequence of points {x,} generated by Newton’s method

converges to x, if xg is sufficiently close to x..

Why do we need this method? In real life, we may not know the real function formula. We only have
data, using which we can approximate the function formula. In a way, Newton’s method is true “applied
mathematics”.

g(xn)

Proof of Theorem Let g(z) = f'(x) so that x,11 = x, — vaem]

By g € C?,3a s.t. |¢/(z1)| > aVay and |¢”(z2)| < 1 Vs in a neighbourhood of z, (choose a small enough).
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_ 9(zn)
Tpt+l — Tx = Tp — —; — Tx
g (zn)

g($n) — g(a:*)

=Tp — Tx — Ty) = 0
_ —lg(@n) — g(zs) = g'(xn) (zn — z.)]
g (zn)
1 g"(¢) 2
= 2 gwn) (Tn — T4)
14" 1
Tppl — Ti| = 5;(3(53) |Tn — 4] < Toﬁl:rn — x| (in small neighbourhood of )
1
p = F\xo — 4 (choose zg sufficiently close to x, s.t. p < 1)
e

<1 2

r1 — T — |0 — T
B 1
T 202

= p’-TO —.’E*‘

|20 — x| |T0 — @4

1 2
To — Ty| < 27“2@1 — T

L 5 2
< 552" |Zo — @4

= EL’CO - $*\P2|$0 — T4
< pPlzo — 4]

Ty, — Ty < p"|To — T4 = 0
= T, — Ts

proof of (4):
By 2nd order MVT,
1
9(@) = g() + g W)@ —y) + 59"€)(= — v)*
for some € € [z,y].
Let x = z, and y = x,, then

1

g(xs) = g(xn) + g’ (zn) (xs — 2n) + 59”(5)(5”* - xn)2

= —[g(n) — 9() — o (@00 (0 — 7)) = 56"(€)(n — 2.)?

Newton’s Method (generalized) f:Q C R" - Rand f € C?onQ

open

xg € Q
Tni1 = &n — [V2f(20)] 7'V f ()
(The algorithm requires V2 f(z,,) invertible and stops when V f(z,) = 0)

22

Note Newton’s method may fail to converge even if f(x) has a unique global min x, and z( is arbitrarily

close to
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Remark Newton’s method, if converge, converges to
1. local min
2. local max
3. saddle point

Example 7.1. Newton’s Method on Quadratic Function Let @@ be a symmetric n x n invertible matrix. Define
quadratic form f(x) := %xTQas : R"™ — R. Then the optima is = 0.
Let zg € R™, then

1 =30 — V2 f(20) "'V f(m0) = 20 — Q' Qo =0

Newton’s method converges in one iteration.

7.2 Method of Steepest Descent (Gradient Method)
f:Q C R* >R, C!
open
Recall: Direction of steepest ascent at xq is given by the direction of gradient V f(zo)

Algorithm of steepest descent =z € (2

Tpt1 = o — gV f(zg)
where a, > 0 satisfying f(xr — 'V f(zr)) = m>151f(a:k —aVf(zg))

(keep going until you find the minimum)

Fact: algorithm is descending If Vf(zy) # 0, then f(zry1) < f(zk)
Why? f(xg+1) = flxg — i Vf(zr)) < f(zr — aVf(xg)) for all 0 < a < ag
Recall: %Is:()f(xk — sV f(zg) = V() (=Vf(xg) = —|Vf(xg)]* <0
= f(zry1) < flzp — aVf(xg)) < f(xy) for small «

Fact: the method of steepest descent moves perpendicular steps

(Try2 — Tt1) - (Tpr1 — k) = (— 1V (2r41)) - (o V (1)) (16)
= a1V f(Tg41) - V (k) (17)
(18)

If ap = 0, then we are done.
If ay, # 0, then

Vf(zgs1) = glzigf(xk —aV f(xr)) (19)
= %\a:akf(ﬂﬁk —aVf(zr) = (=Vf(zr))  Vf(rr — aVf(zk) =0 (20)
= a1V f(Trt1) - Vfzr) =0 (21)

Note This method is not the most efficient. May take infinite steps to converge.
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Theorem (Convergence of Steepest Descent) fcClonQ C R?

open
Let {x} be sequence generated by steepest descent.

Tp+1 = T — apV f(zg)
If {z1} is “bounded in ©Q” (i.e. 3 compact set K C Q s.t. x € K for all k)
Then every convergent subsequence of {z)} converges to a critical point z, € Q of f: Vf(xz,) =0

Proof. xj, € compact K = subsequence zj, — x4 € K

Since f(zo) > f(w1) > f(z2) > ... and f(zk,) N\ f(24)
Suppose by contradiction that Vf(x,) # 0

T, — o = Vf(zg,) = V(zs)

Let y, = g, — o,V f(xk,) = 2, +1. Then yi, — y«. Then

)

) < f(zg, — aVf(xy,)) for alla >0
lim f(y«)

)

)

flxe —aVf(xy)) forall a >0
< minf(z, — aVf(z.)) < f(w)

1—00

But f(y«) = ZIHEOf(y’%) = }E{,‘of(xkﬁl) = f(z), so we have a contradiction.

Steepest descent: Quadratic case Let f follow the general quadratic form

flx) = %a:TQx e
where b,z € R"™ and @ is an n X n positive definite matrix.
Let 0 < A= X1 < X <... < )\, = A be eigenvalues of Q.
Recall that if Q pos-def, then there is a unique minimum x, such that Qz, —b=0 < z, =Q'b
Define ¢(z) := 3(z — 2*)TQ(z — 2*) = f(z) + const
Note that g(x) > 0 and ¢(x.) = 0.
Define g(z) := Qz — b= Vq(x) = Vf(x)
So using the method of steepest descent:

Tpy1 = T — apg(Ty)
Derive the formula for «y:

oy minimizes f(xp — ag(xy))

0= %m:akf(wk — ag(zy))

= Vf(zr — arg(zr)) - (—g(zk))

= —[Q(z — arg(wk)) — b] - (9(x))
= —(Qz —b) - g(zx)

= —|g(x)|* + arg(zr) T Qg(xy)

o gla))?
= T G TQglan)
= Tpy1 = T — g(Tk)
|9(1‘k)|2

9(x)

B 9(zk)TQg(xr)

24
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Claim:
(4, lg(ax)* .
stern) = (1~ GEorares) GeaTa )
Proof.
q(Tr11) = q(z) — arg(wy)) (36)
= %(xk — apg(zr) — 2.)7Q(zy — apg(zr) — ) (37)
= 5o — 2 — arg(o)TQ((a — 2.) — agg(a) (39)
= %(mk — )7 Q(wk — 24) — arg(wr) Qg — 24) + %aig(mk)TQg(a;k) (39)
= 4(ex) — kg (o) Qi — 1.) + 303g(x) Qo() (10)
= q(zk) — ¢(@Tht1) = —%Oéig(iﬂk)TQg(ivk) + ag(zi) " Qay, — ) (41)
Yk 1= Tp — Ty (42)
q(zx) — q(The1) _ —2a2g(xe)TQq(z) + cg(zr) T Qui (43)
q(xy,) SYE Qur
(6% xr T — CE2 xr T X
_ 2009(xk) Qyz;ngZg( k)" Qg(w) (44)
(gk = g(x1) = Qup — b= Qup — Qui = Q(zp — 7.) = Que = Y =Q 'gr)  (45)
o 2 _ 2T
_2 k’gl;‘;{Q_lzzk Qg (46)
Q\Zgi _ EQL\‘I
i, ;3522_122@91@ (47)
_ |gk]* (o = o)
(97 Qo) (9} Q1 gn) 9@k TQg(@r)
o) = gk |* .
— () «kH»—QdQ%x#QI%Qq<w (48)
— ols B |gk]*
::quﬂn—q(m(t(da%xﬂQA%Q (49)
<(1- %)q(xk) (By Kantorovich Inequality)
2
— glon) < (3140 (50)
m

Kantorovich Inequality @ : n x n positive definite symmetric matrix
A=< <. <\ =A
For any v € R™:
lv]4 ANA
(0TQ0)(TQ Tv) = (A1 A)?

Y

Theorem: Steepest Descent in Quadratic Case For any zg € R”, method of steepest descent converges
to the unique min point z, of f.
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Furthermore, for ¢(z) := 3(z — 2.)Q(z — z,), where Q symmetric positive definite and 0 <A =X < Ay < ... <
An = A,
(A — \)?
< >~ 7

Let r := %, then

g(ax) < r*q(wo)
for all k. As k — oo, q(xx) — 0.

Notes

L.z, € {z € R"|g(x) < rFq(wo)} = SLy
(sublevel set of function ¢(x))
Note that SLy, is strictly decreasing. Furthermore, note that x, is the only point satisfying the inequality
at the limit:

a(z.) =0 = lim g(zo)
k—o0

Therefore, lim SL; = {0}, and xj — ..
k—o0

2. r= (Ef;ﬁgﬁ = (2??;})2 depends only on the ratio % = “condition number of Q”

case%zl: r=0= 0<gq(z1) <0-q(z9) = q(z1) =0 = x1 = x4

(Gradient descent converges to the unique global minimum in only one iteration.)
case%>>1 = r~1
(worst case, converges very flow)

7.3 Method of Conjugate Direction

Motivation Method of conjugate directions is designed for quadratic functions with form f(z) = %xTQw —
bT'z. For other functional forms, one can approximate the function using quadratic form firstly and then apply
method of conjugate directions.

Definition: Q-orthogonality Let QQ be a symmetric matrix. Two vectors d,d’ € R™ are Q-orthogonal (or
Q-conjugate) if
d'Qd =0

A finite set of dp, ..., dy is called Q-orthogonal set if df Qd; = 0 for all i # j.

Example 1 Q is an identity matrix. d,d are Q-orthogonal iff they are orthogonal.

Example 2 If d,d’ are two eigenvectors with different eigenvalues, then they are Q-orthogonal.

Proof. Suppose Qu = Av and Qw = Nw so X\ # X

<v,Quw>=<v,Nw>=\N<v,w> (51)
=< QTv,w >=< Qu,w >=< \v,w >= A < v,w > (52)
— A= X){v,w) =0 (53)

Since (A — \') # 0, them we have (v,w) = 0.

— vTQu = (v,Qu) = v, w) =0
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Example 3 If ) is an nxn symmetric matrix, then there exists an orthogonal basis of eigenvectors dy, . . ., dp—1
Claim: They are also Q-orthogonal.

Proof. diTde = dZT()\dj) = )‘dszj =0 |
Proposition Let @ be a symmetric positive definite matrix. Let dy, ..., dy be a set of (non-zero) Q-orthogonal
vectors. Then dy, ..., d; are linearly independent.

Proof. Assume agdg + ...+ agdy, = 0 for «; € R.
Multiply the whole equation by diTQ:
aod?Qdo—l—...—i—aid?Qdi—i—... —i—akleQdk =0
S—— SN—— S——
=0 >0 =0

which implies aidiTQdi =0 and o; = 0.
This is true for every i. Therefore dy, ..., d; are linearly independent. |

Lemma (Theorems covered so far)
1. d;,d; are Q-orthogonal if dl-Tde =0;
2. Eigen-vectors with different eigenvalues are ()-orthogonal;
3. Matrix ) symmetric = there exists an orthogonal basis = the set of basis is Q-orthogonal as well;

4. Q-orthogonal vectors are linearly independent.

Example 4 (Special case: Method of Conjugate Direction on Quadratic Functions). Let @ be a positive
definite symmetric n X n matrix. The problem is

min f(z) = %xTQa: — bl

Recall that the unique global minimum is z* = Q~1b.

Let dg,ds,...,d,—1 be non-zero Q-orthogonal vectors.

Note that they are linearly independent by the previous theorem.
Therefore, they form a basis of R™.

The global minimum can be represented as

n—1

¥ = Zajdj, Qj € R
J=0

For every j, the following holds:
dj Qz* = ad] Qd,
djTQx*
= Q= Zroo
d; Qd,
Algorithm: Method of Conjugate Directions Let () be a positive definite symmetric n x n matrix. and
{d; };;:—01 be a set of non-zero Q-orthogonal vectors, note that they form a basis of R™.
Given initial point zg € R", the method of conjugate direction generates a sequence of points {xj}}_, as the
following;:
Tpq1 & Tp + agdy,

d
) gui= V(o)
k



7 DIFFERENT COMPUTATION METHODS FOR SOLVING OPTIMUM 28

Theorem Given the method of conjugate, the sequence of points generated eventually reaches the global
minimum. That is, z,, = z*.

Proof. Let x*,zg € R™, consider

n—1
vt —x0 =Y Bjd; (54)
=0
n—1
— " =1x0+ Z Bjdj (55)
=0
n—1
df Q(z* —xo = d] Q) _ B;d;) (56)
=0
= Bjd; Qd (57)
de(a:* )
- M. 58
= B, d;erj (58)

Note that the algorithm generates the sequence as following:

k—1
T = Xo + Z ajd; (59)
§=0
k—1
= (2 —x0) = ) ajd; (60)
7=0
k—1
= diQ(zy —m0) = Y ajdiQdj =0 (61)
7=0
Therefore,
i Q(x* — o)
_ 62
Bk T Qi (62)
_ iy Qa* — @) — dy Q(zk — o) (63)
diL Qdy,
_ GO — ) (64)
df Qdy,
_ df (Qz* — Quy,) (65)
Al Qdy,
T(p —
= M (The first order necessary condition suggests Qz* = b)
dk Qdk
_ 4@z —b) (66)
AL Qdy,
dT
= _M (Assuming f is quadratic)
dk Qdk

= QL (67)
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Consequently,
n—1
¥ =z + Z ,Bjdj (68)
j=0
n—1
= I + Z ajd; (69)
j=0
=z, (70)
[ |

7.3.1 Geometric Interpretations of Method of Conjugate Directions

Theorem Let f € C'(Q,R), where Q is a convex subset of R”, then g is a local minimum of f on € if and
only if
Vf(xg) (y—x0) >0Vy €

Example Now consider the special case in which € is an affine hyperplane, that is,
Q={zeR":cx+b=0}

where dim(Q2) is n — 1.
Note that for every y € Q, V f(z0) - (y —x9) > 0. For any feasible direction a := y — xy at point xq, by definition
of hyperplane, —a is a feasible direction as well.

Consequently, a - Vf(xg) = 0 for every feasible direction. That is, V f(z) L €. |
Geometric Interpretation Let dy,dy,...,d,—1 be a set of non-zero QQ-orthogonal vectors in R™. Let B =
Span{dy,...,d—1} for k=0,1,...,n.

Note:

By = {0} C By = (dg) € By = (dp,d1) C ... C By, = (do,...,dp—1) =R"

dim By, =k

o+ BygCxg+B1C...

Theorem The sequence {x}} generated from zy € R™ by conjugate directions method has the property that
e e . _ 1.7 T
x), minimizes f(z) = 52" Qx — b" x on the affine hyperplane x¢ + By.

Proof. Recall that xj, is the minimizer of f(z) on xg + By <= Vf(zr) L 2o+ By
Enough to prove that V f(z) L By.

Remarks: xo here is like a bias which shifts the subspace by a “constant”. Also, “Vf(xy) L By” here means
that V f(xy) is perpendicular to every basis vector of By.

We prove this by induction on k.
Notation: V f(z) = Qxr — b =: gi.
Base case: k = 0 By = {0} = g0 L By
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Inductive Step: Assume that g; | By, show ggyr1 L Biyq

Since
Tpy1 = Tk + agdy
then
—_—— N——
Ik+1 9k
g£+1Bk = <d0a"'7dk‘—1> (71)
Ger1di = (g + arQdy di)™ dy, (72)
—_—
9k+1
= g} di, + cxd} Qdy (73)
T
T 9e k7
=g, dir + (— Vd, Qdy, (74)
—0 (75)
This implies that gg+1 L d
For 0 <i < k,
i1 - di = (gr + xQdy) " d; (76)
= g;‘gdz‘ + Oékdedi (77)
=0 =0
-0 (78)
Therefore, gy+1 L do,dy,...,dg
Hence Jk+1 L <d(), dl, . ,dk> = Bk |
Corollary x, minimizes f(z) on xg + B, (which is R™)
ie xp, ="
orollary 0 < g(zy) %g(l)lkaq(ﬂf) < q(wk-1) mExﬂI}i}%k_lq(x)
Corollary
min f(z) (79)
T € xg+ B
i td
_, minf(zo+tdo) (Since o + By = {wo + tdo|t € R})
teR
d
= 0= Ehztof(xo + tdy) = Vf(zo + todo) - do (where tg is such that x1 = xg + todp)
[ |

8 Calculus of Variations

Note: infinite dimensional optimization.
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Comparison with finite dimensions

finite dimensional oo-dimensional
problem min f(x) min F[u]
constraint xeM ue A
note set of points in R™ | space of functions

Model model
A={u:[0,1] = Rlu € C's.t.u(0) = u(l) = 1}

Note: We call F' a “Functional”. It maps a function to a real number.
Notation Write u(-) for a function w.

8.1 Example
1
= 5 Jo {u(2)? + /' (2)?} da.
min Flu(-)]
u(-) e A
means: Find u*(-) € A s.t. Flu*(-)] < Flu(-)] for all u(-) € A.
Plan
1. We derive 1st order necessary conditions for a local min;
2. Find a function u*(-) satisfying these conditions;

3. Check this candidate u*(+) is in fact a minimizer.

We reduce this problem to (many) 1-dimensional problems.
Step 1: Derive 1st order necessary conditions for a local min
Fix v(-) € C! on [0,1] s.t. v(0) =0 = v(1).

Suppose u*(-) € A is a minimizer.

Notice that u*(-) + sv(-) € AVs € R.

Let f: R — R s.t. f(s):= F(u*(-) + sv(-)).

If w*(-) minimizes F', then s = 0 minimizes f, then f’(0) = 0.

Then f(0) = Flu*(-)] < Flu*(-) + sv(-)] = f(s)

£1(0) = S0 FIu () + 500
f(s)

|3 0% /{ )+ sv(@))? + [ (z) + sv'(2)]?} do
1
= gl [ 0@+ @ e+ fplunos [ (@) o @) do

1
:/0 {u*(z)v(x) +u* (z)0' (z)} do

So far, if u*(-) is a minimizer of F' over A, then

/ {u @)o(e) + u* (@) (@)} dz =0 ()

31

(80)

(81)
/{v 2 4 o/(2)?) dae
(82)

(83)
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for all v(-) € C* on [0,1] and v(0) = 0 = v(1). We call this a “primitive form of 1st order condition”, and call

v(-) the test functions.
Recall Integration by parts:

1 1
/ = w(z)v(z)]} — w' (z)v(x) dx
/Ow<x>v<as>da:— (@)o(a))} /0 (z)o(x)d

/01 u* x)dz + /01 u* (x)v'(z) dz

1 1
/ u* r)de + u*(z)v(2)]} —/ " (x)v(x) dx
0 — 0

1

I
o

E
—~

8
S~—
~—
=
&
I

8

0

For all test functions v(-).

Lemma: Fundamental Lemma of Calculus of Variations Suppose g is continuous function on interval

[a,b]. If .
/ g(x)v(x)de =0

for all test functions v(-), then
g(z) =0 on [a,b)].

Then by Fundamental Lemma of Calculus of Variations, (V) = u*(z) — «/*(z) = 0, which is the 1st order

necessary condition for u*( )

Step 2: Find a function u*(+) satisfying these conditions
u*(z) = u™( ) N z —z
= u (r) =c1e” + c2e
{ “(0) = (1) =1 W=acre
1=u*0
(0)=c1+ ¢ e = o e
1 =u*(1) =cre+ ca+ +1 e+1
e
:> * . X —X
o) = ae o

Step 3: check u*(-) is in fact a global minimizer.
We derived that

=0
Flu™ ()] < Flu™(-) + sv(-)]
for all test functions v(-) and all s € R. In particular, let s = 1, then
Flu™ ()] < Flu™(z) + v()]
for all test functions v(-). In particular, let v(-) = u(-) — u*(-), then
Flu*(1)] < Flu()]
for all u(-) € A.

Note: The space of v(+) is a vector space, but A is not a vector space (since u(:) # 0).

vector space.

52 1
Flu*() + s0()] = / (" @(@) + o @ @} o+ 5 [ @)+ do
;

It is a translate of a
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Lemma: Fundamental Lemma of Calculus of Variations Suppose g is continuous function on interval
[a,b]. If

/abg(x)v(x) dx =0

for all test functions v(-), then
g(x) =0 on [a,b].

Proof. Suppose for contradiction that g(x) # 0 on [a, b].
WLOG, g(z¢) > 0 for some z¢ € (a,b). This implies that g > 0 on (¢, d) C (a,b).
Let v(-) be a continuous function s.t.

=0 otherwise

o) {> 0 on (¢d)

Then ) .
/ g(z)v(z)de = / g(x)v(x) dz >0
a c N=——
>0
which leads to a contradiction. [ |

8.2 Classical Problem: the Brachistochrone

Galileo (1638): Find the curve connecting A and B on which a point mass moves without fiction under the
influence of gravity in the least time possible.

Johann Bernoulli (1696): Revisit the problem and sent invitations

6 correct solutions sent (1697):

Leibniz, Johann, Jacob, 'Hospital, Von Tschinhaus, Anonymous — Newton (*)

This answer is the beginning of Calculus of Variations

8.3 General class of problems in Calculus of Variations

A={u:[a,b = Rlu e C',ula) = A,u(b) = B}

b
F[u()]:/ L(z,u(x),u (x)) dw

where L(x,z,p) : [a,b] x Rx R — R

Model example L(z,z,p) = #, Flu(-)] = [
Notation:

Definition Given u(-) € A, suppose 3 function g(-) on [a, b] s.t.

b
SleoPlut) +500] = [ gla)ota) da

for all test functions v(-), then g(-) is called the variational derivative of F' at u(-),
denoted by ‘;—i(u)() or (35_5(“) or z(SS_I;.
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Analogy In finite dimensions:
d
T lomof(ut s0) = Vf(w) -0 (o1)
= Z Vf(u)ﬂ)z‘ (92)

for all v € R
In Calculus of Variations (co dimensional):

b
dis|s=0F[u(-) +sv(4)] = /a i—i(u)(z)v(:v) dx (where possible)
~ Z 50 (x)v(z) (a kind of an infinite sum)
Model example L(z,z,p) = #, Flu(")] = fol M dx
1
%|5:0F[’U,(') +sv()]=...= /0 [u(x) — v (z)]v(x) d

for all test functions v(-)
Therefore ‘;—Z(u)($) =u(x) —u"(z)

Lemma (1st order necessary conditions satisfied by a solution u*(-) € C*)
A={u:[a,b = Rlu € C* u(a) = A, u(b) = B}
If u*(-) € A minimizes F' over A, and if ‘;—f(u*)() exists and is continuous, then it must satisfy

oF

W) =0

Proof. note: u*(-) + sv(-) € A
If w*(-) is a minimizer of F, then
Flu*(-) < Flu™(-) + sv()]
for all test functions v.
Define f(s) := Flu*(-) + sv(-)], then f(0) < f(s) for all s € R.

Then
bSF d
[ e @) (0la) do = o lemaFlut() + s0() (95 () () exists)
d
= %’s:of(s) (93)
= f'(0)=0 (0 is the global minimize of f)
This implies that % (u*)(-) = 0. |

Theorem: Leibniz Integral Rule Let f(z,t) be a function such that both f(x,t) and its partial derivative
%f(m, t) is continuous w.r.t. ¢ and x in some region of the (z,t)-plane, including a(z) <t < b(z),zo < x < 7.
Also suppose that the functions a(x) and b(x) are both continuous and both have continuous derivatives for
rg < o < 1. Then, for o <z < 21,

d b(x) d g W) 5
Az (/a(x) f(x,t) dt) = f(z,b(x)) - %b(l‘) — f(z,a(x)) - %a(:c) + /a(m) %f(%t) dt

Note that if a(x) and b(z) are constants rather than functions of x, we have a special case of Leibniz’s rule:

& ([ ree) [ Gres
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Theorem
A= {u:[a,b = Rlu € C',u(a) = A,u(b) = B}

b
Flu(-)] :/ L(z,u(x),v (v)) dz

where L € C2.
Then if u(-) € C!, then %—i(u)() exists, is continuous, and

L ) @) = Ly (o ula) )] + L, () ()

Let v be a test function (v(a) = v(b) = 0)

b
%\SZOFM-) +sv()] = %\s:o / L(z,u(z) + sv(x), v/ (x) + 50/ () d (94)
= /b %|S:0L(g¢, z,p) dz (By Leibniz’s rule)
b
_ / L.(Yo(@) + Ly(- ) (2) da (95)
ab b
= / L.(v(z)dz +/ Ly( )0 () da: (96)
ab a b b d ‘
= /a L.(-)v(z)dx + L,(-)v(z)|, — /a %Lp(-)v(x) dz (Integration by parts)
b
= / [_%LP(-) + L,(-)]v(z) dx V¥ test functions v(-) (97)

By the definition of variational derivative, it follows that

O ) ) = — Ly u(a), ()] + L, u(a) (7))

Furthermore, since L(-) € C?, —%Lp(-) and L,(-) are continuous. Moreover, u(-) and u/(-) are continuous, so is
the composite function. Hence the variational derivative is continuous.

Z2+p2

w(z)2+u/ ()2
()] = o “OH da

!

Model example L(z,z,p) =

La(@,2p) = 2 —> Li(mu(), ' (2)) = u(a) i
Lz, zp) =p = Ly(zu(z),u(z)) = (z)
oF d , B "
O () = L (@) + ulw) = (@) + uw)

If u*(-) € A is a minimizer, then —u”(z) + u(z) =0
Example 8.1 (min arclength). We will show that the straight line gives the shortest path.
b 1
min Flu(-)] = / (1 +u'(z)%)2 dx = arclength of u(-)

A= {u:[a,b] = Rlu e C,u(a) = A,u(b) = B}

Then L(z,2,p) = (1+p?)3,L, =0 and L, = —2
en (o, 2,p) = (L4 )} L =0 and L, = — 2
If w*(-) is a minimizer, then
d u'(x)

—— =90
v (1 +w(x))2
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wiz)
(1+u(2))2
= /(2)? = const(1 +u/(z)?)
Then u/(z) = « for some a € R.
Then u(x) = ax + 8 for some g € R.

= const

Example 8.2 (Surface Area of Revolution). Suppose u(-) € C*! on [a, b], the surface area of rotating the curve
u connecting a and b can be computed as

b
Flu(-)] = / 2nu(x)\/1+ v/ (z) dx
a
For simplicity, assume u > 0. In this example, the space of feasible functions is
A={u:[a,b] = R:uc C' ula)=A,ubd) = B,u> 0}
If u(-) solves the minimization problem, it must be the case that

OF
()

0 (1)
Notice
L(z,z,p) =272/1+ p?
L.(z,z,p) =2my/1+ p?

p

Vi

Claim: the family of u(-) = 3 cosh(*3*) solves the necessary condition .
Instance 1 When a = 0,b =1,A = B = 1, plugging in the initial condition gives

Lp(ZL‘, Z7p) =2nz

Beosh (=2) =1
’ (98)
(3 cosh % =1

Q

solving above system of equations provides the solution.
Instance 2 When a =0,b=1,A4 = 1, B = 0, plugging in these initial conditions gives

Beosh (&=2¢) =1
’ (99)
[ cosh I_To‘ =0
because cosh > 0, the second equation suggests S = 0, but in this case the first equation would never hold.
Therefore, there is no solution to this calculus of variation.

In face, the surface area is minimized by

u(x):{1 if 2 =0 (100)

0 otherwise

8.4 Euler-Lagrange Equations in R"

Setup
b
Flu(")] :/ L(z,u(z), (x)) dx (101)
u: [a,b] - R" (102)
L(z,z,p): [a,b] x R" x R" - R (103)
A:={u:[a,b] > R" :u e C" u(a) = A, u(b) =B} (104)
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Theorem 8.1 (Euler-Lagrange Equations in Vector Forms).

d
—VyL(@,2,p) + VoL(w,%,p) =0 €R" ({) (105)

Example 8.3 (Classical Lagrangian Mechanics).

V(z) : R" — R potential energy (106)
1
5m\|v\|§ kinetic energy (107)
1
L(t,x,v) := §m||v||% — V() difference between KE and PE (108)

Consider a path z(t) in R", define objective function as
b
Fle()) = [ Lita(o). /(1) de (109)
ab 1 )
= [ gmllel - V(o) de (10)

The Euler-Lagrange equation in vector form implies

~C V) Ll (1), #(0) + V) Lt (1), (1)) = 0 (111)
— —%ma’c(t) — YV (a(t)) = 0 (112)
= mi(t) = VV(z()) (1) (113)

Remark 8.1. (1) is often referred to as Newton’s second law: object moves along the path on which the total
conversion between kinetic and potential energies is minimized.

Example 8.4 (3-Dimensional Pendulum). Suppose the pendulum is moving on a path such that the total
conversion between kinetic and potential energies is minimized, that is

b b 1
min/ L(t) dt = / §m(3'3(t)2 + (1) + 2(t)%) — mgz(t) dt (114)

with the restriction that ||x(¢)|| = ¢, where ¢ is the radius of the sphere.
The restriction can be embodied by framing the problem using spherical coordinates:

x = cospsinf (115)
y := {sinpsinf (116)
z = —{cosf (117)

where the path of motion can be characterized using (6(t), ¢(t)).
The objective function is therefore

L (t, (:90((?)> , (Z((?)» _ %mﬁw'? + 2 sin(6)) + mgl cos 0 (118)

So the Euler-Lagrange equation can be written as

“aivot (1 (60) - (G0)) + v (= (20) - (50)) = )
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8.5 [Equality constraints
8.5.1 Isoperimetric constraints
Recall: finite dimensional case
f,g:R" >R
min  f(x)

r€ER™
g(xz) = const

38

(120)

(121)

Suppose regular point ., (Vg(x4) # 0) is a minimizer. Then 3\ € R s.t. Vf(z.) + AVg(z.) = 0 (by Lagrange

multipliers)

Remark 8.2. z, minimizes f+ Ag. The Lagrange multipliers convert the original problem to an unconstrained

optimization problem L(x,\) = f(z) + Ag(x).

Infinite dimensional case

b

F[u(-)]:/ LF (@, u(z), v/ (2)) do
b

Glu() = / L9z, u(x), o/ (¢)) da

. Flu(-
Join, - Flu()]
Glu(-)] = const
Suppose regular point w,(-) (%(u*) # 0) is a minimizer, then 3\ € R s.t.

a 5G.

Remark 8.3. u, minimizes F' + \G.
Example 8.5.
A:={u:[~a,a] = R,uc C' u(—a) = u(a) = 0}

b
Flu(-)] = / u(z) da
Glu(")] = /b V1+d(z)de =1>0 note that G is arg length

i —-F
min - (—F)[u()]
Glu(-)] =1
Let u.(-) be a minimizer, then

oF d
oF _ 4 F g F
ou dx P t iz
oG d & G
Ay S )
ou dx P +

Then Euler-Lagrange equations suggests

d d
—%L{f +LF + /\(—@LS +L9 =0
ul (z)*

2
= YT u@

5 = (C1—2)*(f)

(122)

(123)

(124)

(125)

(126)

(127)

(128)
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Claim: Solution u.(-) to (1) satisfies
(. — C1)2 + (us(x) — Cp)* = N2

So that the graph of u,(-) lies on a circle, and our solution is the semi-circle that has length (.
Check:

o [2(z — C1) + 2(us(z) — Co)ul(z)] =0 (129)
which implies
’ . Xr — Cl
W) = - (130)
u ()2 (w — 01)2
— @)= T (131)
Also,
(W (2)*) (us (@) = C2)% = (& = C1)* + (us(z) — C2)? = N? (132)
)\2
= (@) - O = e (1) (133)
Combine (§) and (§8),
)\2
u,(z)? = (z — C1)? (134)

It is possible to solve for u:

r=—a,y=0,(—a—C1)%+ (0 —Cs)? = \?
z=4a,y=0,(+a—C)1)> + (0 — Ca)? = N\?

[ VI +d () de =1

8.5.2 Holonomic constraints

Setup(3-Dim Special Case) Minimize

with constraint

H(a(t), y(t), 2(1) = 0
x4 (t)
Theorem 8.2 (Euler-Lagrange Equations). Let x.(t) := | y«(¢) | be the minimizer subject to the constraint
24 (1)

then
g [.I‘* 73/*( )72*()](t) Hx[l’*(),
;[ﬂc*() s (), 2 O)](E) | +A@) | Hylz (),
S (), 9 (), 2 ()] (1) i )

where ) : [a,b] — R is a function.



