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1 Matrix Calculus

Row v.s. Column Vector Our default rule is that every vector is a column vector unless explicitly stated
otherwise.
This is also known as the numerator layout.
Special case: For f : Rn → R, Df is a 1× n matrix or row vector.

1.1 Matrix Multiplication

Definition 1.1.1 Let A be m× n, and B be n× p, and let the product AB be

C = AB

then C is a m× p matrix, with element (i, j) given by

cij =

n

k=1

aikbkj

for all i = 1, 2, . . . ,m, j = 1, 2, . . . , p.

Proposition 1.1.2 Let A be m× n, and x be n× 1, then the typical element of the product

z = Ax

is given by

zi =

n

k=1

aikxk

for all i = 1, 2, . . . ,m.
Similarly, let y be m× 1, then the typical element of the product

zT = yTA

is given by

zTi =

n

k=1

akiyk

for all i = 1, 2, . . . , n.
Finally, the scalar resulting from the product

α = yTAx

is given by

α =

m

j=1

n

k=1

ajkyixk

1.2 Partitioned Matrices

Proposition 1.2.1 Let A be a square, nonsingular matrix of order m. Partition A as

A =


A11 A12

A21 A22



so that A11 and A22 are invertible.
Then

A−1 =


(A11 −A12A

−1
22 A21)

−1 −A−1
11 A12(A22 −A21A

−1
11 A12)

−1

−A−1
22 A21(A11 −A12A

−1
22 A21)

−1 (A22 −A21A
−1
11 A12)

−1



proof:
Direct multiplication of the proposed A−1 and A yields

A−1A = I
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1.3 Matrix Differentiation

Proposition 1.3.1
∂A

∂x
=

∂AT

∂x

Proposition 1.3.2 Let
y = Ax

where y is m × 1, x is n × 1, A is m × n, and A does not depend on x. Suppose that x is a function of the
vector z, while A is independent of z. Then

∂y

∂z
= A

∂x

∂z

Proposition 1.3.3 Let the scalar α be defined by

α = yTAx

where y is m× 1, x is n× 1, A is m× n, and A is independent of x and y, then

∂α

∂x
= yTA

and
∂α

∂y
= xTAT

Proposition 1.3.4 For the special case where the scalar α is given by the quadratic form

α = xTAx

where x is n× 1, A is n× n, and A does not depend on x, then

∂α

∂x
= xT (A+AT )

proof:
By definition

α =

n

j=1

n

i=1

aijxixj

Differentiating with respect to the kth element of x we have

∂α

∂xk
=

n

j=1

akjxJ +

n

i=1

aikxi

for all k = 1, 2, . . . , n, and consequently,

∂α

∂x
= xTAT + xTA = xT (AT +A)



Proposition 1.3.4 For the special case where A is a symmetric matrix and

α = xTAx

where x is n× 1, A is n× n, and A does not depend on x, then

∂α

∂x
= 2xTA
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Proposition 1.3.5 Let the scalar α be defined by

α = yTx

where y is n× 1, x is n× 1, and both y and x are functions of the vector z. Then

∂α

∂z
= xT

∂y

∂z
+ yT

∂x

∂z

Proposition 1.3.6 Let the scalar α be defined by

α = xTx

where x is n× 1, and x is a functions of the vector z. Then

∂α

∂z
= 2xT

∂y

∂z

Proposition 1.3.7 Let the scalar α be defined by

α = yTAx

where y is m × 1, A is m × n, x is n × 1, and both y and x are functions of the vector z, while A does not
depend on z. Then

∂α

∂z
= xTAT ∂y

∂z
+ yTA

∂x

∂z

Proposition 1.3.8 Let A be an invertible, m×m matrix whose elements are functions of the scalar parameter
α. Then

∂A−1

∂α
= −A−1∂A

∂α
A−1

proof:
Start with the definition of the inverse

A−1A = I

and differentiate, yielding

A−1∂A

∂α
+

∂A−1

∂α
A = 0

rearranging the terms yields
∂A−1

∂α
= −A−1∂A

∂α
A−1



Vector-by-vector Differentiation Identities 1.3.9

Young’s Theorem 1.3.10 i.e. Symmetry of second derivatives

[∇xyf(x, y)]
T = ∇yxf(x, y)

proof:
This is straightforward by writing out the elements of the matrix. 

2 Second-year Calculus Review

functions R → R



2 SECOND-YEAR CALCULUS REVIEW 6

2.1 Mean Value Theorem in 1 Dimension

g ∈ C1 on R
g(x+ h)− g(x)

h
= g′(x+ θh)

where θ ∈ (0, 1)
Or equivalently,

g(x+ h) = g(x) + hg′(x+ θh)

2.2 1st Order Taylor Approximation

g ∈ C1 on R
g(x+ h) = g(x) + hg′(x) + o(h)

where o(h) is “little o” of h, the error term.

Say a function f(h) = o(h), this means lim
h→0

f(h)
h = 0

For example, for f(h) = h2, we can say f(h) = o(h),

since lim
h→0

f(h)
h = lim

h→0

h2

h = lim
h→0

h = 0

proof: (Use MVT):
WTS : g(x+ h)− g(x)− hg′(x) = o(h)

lim
h→0

[g(x+ h)− g(x)]− hg′(x)

h
= lim

h→0

[hg′(x+ θh)]− hg′(x)

h

= lim
h→0

g′(x+ θh)− g′(x)

= lim
h→0

g′(x)− g′(x)

= 0
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2.3 2nd Order Mean Value Theorem

g ∈ C2 on R

g(x+ h) = g(x) + hg′(x) +
h2

2
g′(x+ θh)

for some θ ∈ (0, 1)

proof:
WTS: g(x+ h)− g(x)− hg′(x)− h2

2 g′′(x) = o(h2)

lim
h→0

g(x+ h)− g(x)− hg′(x)− h2

2 g′′(x)

h2
= lim

h→0

[h
2

2 g′(x+ θh)]− h2

2 g′′(x)

h2

= lim
h→0

1

2
(g′′(x+ θh)− g′′(x))

= lim
h→0

1

2
(g′′(x)− g′′(x))

= 0


multivariate functions: Rn → R

2.4 Recall: Definition of gradient

Gradient of f : Rn → R at x ∈ Rn (denoted ∇f(x)) if exists is a vector characterized by the property:

lim
v→0

f(x+ v)− f(x)−∇f(x) · v
||v|| = 0

In Cartesian coordinates, ∇f(x) = ( ∂f
∂x1

(x), . . . , ∂f
∂xn

(x))

2.5 Mean Value Theorem in n dimension

f ∈ C1 on Rn, then for any x,v ∈ Rn,

f(x+ v) = f(x) +∇f(x+ θv) · v

for some θ ∈ (0, 1)

proof: Reduce to 1-dimension case
g(t) := f(x+ tv), t ∈ R

g′(t) =
d

dt
f(x+ tv)

=

n

i=1

∂f

∂xi
(x+ tv) · d(x+ tv)i

dt
(by Chain Rule)

=
 ∂f

∂xi
(x+ tv) · d(xi + tvi)

dt

=
 ∂f

∂xi
(x+ tv) · vi

= ∇f(x+ tv) · v (*)
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g ∈ C1 on R
Using MVT in R:

f(x+ v) = g(1)

= g(0 + 1)

= g(0) + 1g′(0 + θ1) (θ ∈ (0, 1))

= g(0) + g′(θ)

= f(x) +∇f(x+ θv) · v (by (*))



2.6 1st Order Taylor Approximation in Rn

f ∈ C1 on Rn

f(x+ v) = f(x) +∇f(x) · v+ o(||v||)

proof:

lim
||v||→0

[f(x+ v)− f(x)]−∇f(x) · v
||v|| = lim

||v||→0

[∇f(x+ θv) · v]−∇f(x) · v
||v||

= lim
||v||→0

[∇f(x+ θv)−∇f(x)] · v

||v||
= 0 ( v

||v|| is a unit vector, remains 1)



2.7 2nd Order Mean Value Theorem in Rn

f ∈ C2 on Rn

f(x+ v) = f(x) +∇f(x) · v+
1

2
vT∇2f(x+ θv) · v

Remarks In this course, ∇2 means Hessian, not Laplacian.

∇2f(x) =


∂2f

∂xi∂xj



1≤i,j≤n

(x) =





∂f
∂2
1

∂f
∂1∂2

. . .
∂f
∂2∂1

. . .
...





The Hessian matrix is symmetric. This is sometimes called Clairaut’s Theorem.

note: vT∇2f(x)v =


1≤i,j≤n
∂2f

∂xi∂xj
f(x)vivj

2.8 2nd Order Taylor Approximation in Rn

f ∈ C2 on Rn

f(x+ v) = f(x) +∇f(x) · v+
1

2
vT∇2f(x)v+ o(||v||2)
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proof:

lim
||v||→0

[f(x+ v)− f(x)]−∇f(x) · v− 1
2v

T∇2f(x)v

||v||2 = lim
||v||→0

[12v
T∇2f(x+ θv) · v]− 1

2v
T∇2f(x) · v

||v||2
(By 2nd MVT)

= lim
||v||→0

1

2
(

v

||v||)
T [∇2f(x+ θv)−∇2f(x)](

v

||v||)

= 0



2.9 Geometric Meaning of Gradient

f : Rn → R
Rate of change of f at x in direction v (||v|| = 1) = d

dt |t=0f(x+ tv)

d

dt
|t=0f(x+ tv) = ∇f(x+ tv) · v|t=0

= ∇f(x) · v
= |∇f(x)||v| cos θ
= |∇f(x)| cos θ (||v|| = 1)

maximized at θ = 0
So ∇f(x) points in the direction of steepest ascent.

2.10 Implicit Function Theorem

f : Rn+1 → R ∈ C1

Fix (a, b) ∈ Rn × R s.t. f(a, b) = 0.
If ∇f(a, b) ∕= 0, then {(x, y) ∈ (Rn × R)|f(x, y) = 0} is locally (near (a, b)) the graph of a function.

2.11 Level Sets of f

c-level set of f := {x ∈ Rn|f(x) = c}

Fact gradient ∇f(x0) ⊥ level curve (through x0)

3 Convex Sets & Functions

3.1 Definitions

Definition of Convex Set Ω ⊆ Rn is a convex set if x1,x2 ∈ Ω ⇒ sx1 + (1− s)x2 ∈ Ω where s ∈ [0, 1]

Definition of Convex Function A function f : convex Ω ⊆ Rn is convex if

f(sx1 + (1− s)x2) ≤ sf(x1) + (1− s)f(x2)

for all x1,x2 ∈ Ω and all s ∈ [0, 1]

Remarks Second line above (or equal to) the graph

Definition of Concave Function A function f is concave if −f is convex.
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3.2 Basic Properties of Convex Functions

Let Ω ⊆ Rn be a convex set.

1. f1, f2 are convex functions on Ω ⇒ f1 + f2 is a convex function on Ω.

2. f is a convex function, a ≥ 0 ⇒ af is a convex function.

3. f is a convex function on Ω ⇒ The sublevel sets of f , SLc := {x ∈ Rn|f(x) ≤ c} is convex.

proof of (3):
Let x1, x2 ∈ SLC , so that f(x1) ≤ c and f(x2) ≤ c.
WTS: sx1 + (1− s)x2 ∈ SLc for any s ∈ [0, 1]

f(sx1 + (1− s)x2) ≤ sf(x1) + (1− s)f(x2) (f is convex)

≤ sc+ (1− s)c

= c

⇒ sx1 + (1− s)x2 ∈ SLc



Example of a convex function Let f : R → R, f(x) = |x|
Let x1, x2 ∈ R, s ∈ [0, 1]
Then

f(sx1 + (1− s)x2) = |sx1 + (1− s)x2|
≤ |sx1|+ |(1− s)x2| (by Triangle Inequality)

= s|x1|+ (1− s)|x2|
= sf(x1) + (1− s)f(x2)

Then f is a convex function.

Theorem - Characterization of C1 convex functions Let f : convex subset of Rn Ω → R be a C1

function.
Then,
f is convex ⇐⇒ f(y) ≥ f(x) +∇f(x) · (y − x) for all x, y ∈ Ω

Remarks Tangent line below the graph.

proof:
(⇒)
f is convex, then by definition,

f(sx1 + (1− s)x2) ≤ sf(x1) + (1− s)f(x2)

f(sx1 + (1− s)x2)− f(x2) ≤ s(f(x1)− f(x2))

f(sx1 + (1− s)x2)− f(x2)

s
≤ f(x1)− f(x2)

lim
s→0

f(x2 + s(x1 − x2))− f(x2)

s
≤ f(x1)− f(x2)

∇f(x2) · (x1 − x2) ≤ f(x1)− f(x2) (since d
ds |s=0f(x2 + s(x1 − x2)) = ∇f(x2) · (x1 − x2))

f(x2) +∇f(x2) · (x1 − x2) ≤ f(x1)

f(x) +∇f(x) · (y− x) ≤ f(y)
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where 0 ≤ s ≤ 1
(⇐)
Fix x0,x1 ∈ Ω and s ∈ (0, 1)
Let x = sx0 + (1− s)x1






f(x0) ≥ f(x) +∇f(x) · (x0 − x)

= f(x) +∇f(x) · (1− s)(x0 − x1)

f(x1) ≥ f(x) +∇f(x) · (x1 − x)

= f(x) +∇f(x) · s(x1 − x0)

sf(x0) ≥ sf(x) +∇f(x) · (1− s) · s(x0 − x1)

(1− s)f(x1) ≥ (1− s)f(x) +∇f(x) · (1− s) · s(x1 − x0)

Then
sf(x0) + (1− s)f(x1) ≥ f(x) + 0

Then f is convex. 

3.3 Criterions for convexity

C1 criterion for convexity

f : Ω → R is convex ⇐⇒ f(y) ≥ f(x) +∇f(x) · (y − x)

for all x, y ∈ Ω

Theorem: C2 criterion for convexity Let f ∈ C2 on Ω ⊆ Rn (here we assume Ω ⊆ Rn is a convex set
containing an interior point)
Then

f is convex on Ω ⇐⇒ ∇2f(x) ≥ 0

for all x ∈ Ω

Remark 1 Let A be an n× n matrix.
“A ≥ 0” means A is positive semi-definite:

vTAv ≥ 0

for all v ∈ Rn

Remark 2 In R,
f is convex ⇐⇒ f ′(x) ≥ 0

for all x ∈ Ω
(“concave up” in first year calculus)

proof for Theorem:
Recall 2nd order MVT:

f(y) = f(x) +∇f(x) · (y − x) +
1

2
(y − x)T∇2f(x+ s(y − x)) · (y − x)

for some s ∈ [0, 1]
(⇐)
Since ∇2f(x) ≥ 0, then

1

2
(y − x)T∇2f(x+ s(y − x)) · (y − x) ≥ 0
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Then
f(y) ≥ f(x) +∇f(x) · (y − x)

for all x, y ∈ Ω.
Then by C1 criterion, f is convex.
(⇒)
Assume f is convex on Ω.
Suppose for contradiction that ∇2f(x) is not positive semi-definite at some x ∈ Ω.
Then ∃v ∕= 0 s.t. vT∇2f(x)v < 0 v could be arbitrarily small and > 0
Let y = x+ v, then

(y − x)T∇2f(x+ s(y − x)) · (y − x) < 0

for all s ∈ [0, 1]
Then by MVT,

f(y) < f(x) +∇f(x) · (y − x)

for some x, y ∈ Ω, and this contradicts the C1 criterion. 

3.4 Minimization and Maximization of Convex Functions

Theorem f : convex Ω ⊆ Rn → R is a convex function.
Suppose Γ := {x ∈ Ω|f(x) = min

Ω
f(x)} ∕= ∅

(i.e. minimizer exists)
Then Γ is a convex set, and any local minimum of f is a global minimum of f .
proof:

Let m = min
Ω

f(x).

Γ = {x ∈ Ω|f(x) = m} = {x ∈ Ω|f(x) ≤ m}

(sublevel set)
Then by Basic Properties of Convex Sets, Γ is convex.
Let x be a local minimum of f .
Suppose for contradiction that ∃y s.t. f(y) < f(x)
(i.e. x is not a global minimum)

f(sy + (1− s)x) ≤ sf(y) + (1− s)f(x)

< sf(x) + (1− s)f(x) (f(y) < f(x))

= f(x)

for all s ∈ (0, 1)
As s approaches 0, s approaches x.
Then we have lim

s→0
f(sy + (1− s)x) = f(x) < f(x).

which is a contradiction. 

Theorem If f : Ω ⊆ Rn → R is a convex function, and Ω is convex and compact, then

max
Ω

f = max
∂Ω

f

Remarks Maximum value of f is attained (also) on the boundary of Ω
proof:
Since Ω is closed, ∂Ω ⊆ Ω, so max

Ω
f ≥ max

∂Ω
f .

Suppose f(x0) = max
Ω

f for some x0 /∈ ∂Ω. Let L be an arbitrary line through x0.
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By convexity and compactness of Ω, L meets ∂Ω at two points x1, x2.
Let x0 + sx1 + (1− s)x2 for s ∈ (0, 1)

f(x0) = f(sx1 + (1− s)x2)

≤ sf(x1) + (1− s)f(x2) (f convex)

≤ max{f(x1), f(x2)}
≤ max

∂Ω
f

≤ max
Ω

f = f(x0)

This implies that
max
Ω

f = max
∂Ω

f

as wanted. 

Example

|ab| ≤ 1

p
|a|p + 1

q
|b|q

where p, q > 1 s.t. 1
p + 1

q = 1.
Special cases:

1.

p = q = 2, |ab| ≤ |a|2 + |b|2
2

2.

p = 3, q =
3

2
, |ab| ≤ 1

3
|a|3 + 2

3
|b|

3
2

proof:
Since function f(x) = − log(x) is convex, then

(− log)|ab| = (− log)|a|+ (− log)|b|

=
1

p
(− log)|a|p + 1

q
(− log)|b|q

≥ (− log)(
1

p
|a|p + 1

q
|b|q)

(− log)|ab| ≥ (− log)(
1

p
|a|p + 1

q
|b|q)

log |ab| ≤ log(
1

p
|a|p + 1

q
|b|q)

|ab| ≤ 1

p
|a|p + 1

q
|b|q (exponential function is increasing)



4 Basics of Unconstrained Optimization

4.1 Extreme Value Theorem

Suppose f : Rn → R is continuous, and compact set K ⊆ Rn Then the problem

min
x∈K

f(x)

has a solution.
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Recall

1.
K ⊆ Rn compact ⇐⇒ K closed and bounded

2. If h1, . . . , hk and g1, . . . , gm are continuous functions on Rn, then the set of all points x ∈ Rn s.t.


hi(x) = 0 for all i

gj(x) ≤ 0 for all j

is a closed set.

3. If such a set is also bounded, then it is compact.

Example
{(x, y) ∈ R2|x2 + y2 − 1 = 0}

by (2), this is a closed set
by (3), this is a compact set.

Remarks f : Ω ⊆ Rn → R convex does not imply f is continuous.

4.2 Unconstrained Optimization

min f(x)
x∈Ω⊆Rn

typically

1. Ω ⊆ Rn

2. Ω = Rn

3. Ω = open

4. Ω = open

Remark

1. max f(x) = −(min−f(x))

2. min f(x) = −(max−f(x))

Definition: local minimum We say that f has a local minimum at a point x0 ∈ Ω if

f(x0) ≤ f(x)

for all x ∈ Bε
Ω(x0), where Bε

Ω(x0) = {x ∈ Ω : |x − x0| < ε} which is an open ball around x0 inside Ω of radius
ε > 0.
We say that f has a strict local minimum at a point x0 ∈ Ω if

f(x0) < f(x)

for all x ∈ Bε
Ω(x0) \ {x0}
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4.3 1st order necessary condition for local minimum

Theorem Let f be a C1 function on Ω ⊆ Rn. If x0 ∈ Ω is a local minimum of f , then

∇f(x0) · v ≥ 0

for all feasible directions v at x0

Definition: feasible direction v ∈ Rn is a feasible direction at x0 ∈ Ω if

x0 + sv ∈ Ω

for all 0 ≤ s ≤ s̄ where s̄ ∈ R

Remarks Feasible directions go into the set.

Corollary Special case: If Ω = Rn is an open set, then any direction is a feasible direction. Then x0 is a local
minimum of f on Ω implies that ∇f(x0) · v ≥ 0 for all v ∈ Rn.


∇f(x0) · v ≥ 0

∇f(x0) · (−v) ≥ 0 ⇐⇒ ∇f(x0) · v ≤ 0
=⇒ ∇f(x0) · v = 0 for all v ∈ Rn

=⇒ ∇f(x0) = 0

. 

4.4 2nd order necessary condition for local minimum

f ∈ C2,Ω ⊆ Rn

If x0 ∈ Ω is a local minimum of f on Ω, then

1. ∇f(x0) · v ≥ 0 for al feasible directions v at x0

2. If ∇f(x0) · v = 0, then vT∇2f(x0)v ≥ 0 (function curves up)

. 

Remark If x0 is an interior point of Ω, then

∇f(x0) = 0, ∇2f(x0) ≥ 0

f ′(x0) = 0, f ′′(x0) ≥ 0

Definition: principal minor Let A be an n× n matrix. A k × k submatrix of A formed by deleting n− k
rows of A, and the same n− k columns of A, is called principal submatrix of A. The determinant of a principal
submatrix of A is called a principal minor of A.

Definition: leading principal minor Let A be an n × n matrix. The kth order principal submatrix of A
obtained by deleting the last n− k rows and columns of A is called the k-th order leading principal submatrix
of A, and its determinant is called a leading principal minor of A.

Definition: positive definiteness (Sylvester’s Criterion) A n× n matrix A is

1. positive definite if vTAv > 0 for all v ∕= 0 ⇐⇒ all eigenvalues > 0 ⇐⇒ all leading principle minors > 0

2. positive semi-definite if vTAv ≥ 0 for all v ⇐⇒ all eigenvalues ≥ 0 ⇐⇒ all principle minors ≥ 0
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Lemma Suppose ∇2f(x0) is positive definite, then

∃a > 0 s.t. vT∇2f(x0)v ≥ a||v||2 ∀v

4.5 2nd order sufficient condition (for interior points)

f ∈ C2 on Ω

If


∇f(x0) = 0

∇2f(x0) > 0
, then x0 is a strict local minimum.

. 

5 Optimization with Equality Constraints

5.1 Definitions of Related Spaces

Definition 5.1.1: surface

M = “surface” = {x ∈ Rn|h1(x) = 0, . . . , hk(x) = 0}

where hi ∈ C1

Definition 5.1.2: differentiable curve on surface A differentiable curve on surface M ⊆ Rn is a C1

function
x : (−, ) → M : s → x(s)

Remarks

1. Let x(s) be a differentiable curve on M that passes through x0 ∈ M , say x(0) = x0. The vector
v = d

ds |s=0 x(0) touches M “tangentially”. We say v is generated by x(s).

2. In previous calculus courses, differentiable curves are often referred to as parameterizations.

Definition 5.1.3: tangent vector Any vector v which is generated by some differentiable curve on M
through x0 is called a tangent vector.

Definition 5.1.4: tangent space Tangent space to the surface M at point x0 is

Tx0M = {all tangent vectors to M at x0} = {v ∈ Rn : v =
d

ds
|s=0 x(s)}

where x(s) is a differentiable curve on M s.t. x(0) = x0

Remarks The zero vector is contained in all tangent spaces.

Definition 5.1.5: T-space

Tx0 = {x ∈ Rn : xT∇hi(x0) = 0 ∀i} = Span{∇h1(x0), . . . ,∇hk(x0)}⊥

Definition 5.1.6: regular point x0 ∈ M is a regular point (of the constraints) if {∇h1(x0), . . . .∇hk(x0)}
are linearly independent.

Remark If there is only one constraint h, then x0 is regular if and only if ∇h(x0) ∕= 0.
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When does the T-space equivalent to the tangent space? When x0 is a regular point (of the con-
straints).

Theorem 5.1.7 Suppose x0 is a regular point s.t. M = {x ∈ Rn : hi(x) = 0 ∀i}. Then

Tx0M = Tx0

Lemma 5.1.8 f, h1, . . . , hk ∈ C1 on open Ω ⊆ Rn

M = {x ∈ Rn : hi(x) = 0 ∀i}
Suppose x0 ∈ M is a local minimum of f on M , then

∇f(x0) ⊥ Tx0M ⇐⇒ ∇f(x0) · v = 0

for all v ∈ Tx0M

5.2 Lagrange Multipliers: 1st order necessary condition for local minimum

f, h1, . . . , hk ∈ C1 on open Ω ⊆ Rn.
Let x0 be a regular point of the constraints M = {x ∈ Rn : hi(x) = 0 ∀i}.
Suppose x0 is a local minimum of f on M , then ∃λ1, . . . ,λk ∈ R s.t.

∇f(x0) + λ1∇h1(x0) + . . .+ λk∇hk(x0) = 0

Proof. x0 regular implies that

Tx0M = Tx0 = Span{∇h1(x0), . . . ,∇hk(x0)}⊥

By Lemma 5.1.8, x0 is a loc min implies that

∇f(x0) ⊥ Tx0M

Then
∇f(x0) ∈ (Tx0M)⊥ = Span{∇hi(x0)}⊥⊥ = Span{∇hi(x0)}

Then
∇f(x0) = −λ1∇h1(x0)− . . .− λk∇hk(x0)

for some λi ∈ R 

5.3 2nd order necessary condition for local minimum

f, h1, . . . , hk ∈ C2 on open Ω ⊆ Rn.
Let x0 be a regular point of the constraints M = {x ∈ Rn : hi(x) = 0 ∀i}.
Suppose x0 is a local minimum of f on M , then

1.

∇f(x0) +

k

i=1

λi∇hi(x0) = 0

for some λi ∈ R

2.
∇2f(x0) +


λi∇2hi(x0) ≥ 0

on Tx0M
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5.4 2nd order sufficient condition for local minimum

f, h1, . . . , hk ∈ C2 on open Ω ⊆ Rn.
Let x0 be a regular point of the constraints M = {x ∈ Rn : hi(x) = 0 ∀i}.
If ∃λi ∈ R s.t.

1.
∇f(x0) +


λi∇hi(x0) = 0

2.
∇2f(x0) +


λi∇2hi(x0) > 0

on Tx0M

Then x0 is a strict local minimum.

Proof. Recall that (2) means [∇2f(x0) +


λihi(x0)] is pos-def on Tx0M .
Then ∃a > 0 s.t. vT [∇2f(x0) +


λihi(x0)]v ≥ a||v||2 for all v ∈ Tx0M .

Let x(s) ∈ M be a curve s.t. x(0) = x0 and v = x′(0).
WLOG, ||x′(0)|| = 1.
By 2nd order Taylor,

f(x(s))− f(x(0)) = s
d

ds
|s=0f(x(s)) +

1

2
s2

d

ds2
|s=0f(x(s)) + o(s2)

= s
d

ds
|s=0[f(x(s)) +



i

λihi(x(s))] +
1

2
s2

d

ds2
|s=0[f(x(s)) +



i

λihi(x(s))] + o(s2)

(


i λihi(x(s)) = 0)

= s[∇f(x0) +


λi∇hi(x0)] · x′(0) +
1

2
s2x′(0)T [∇2f(x0) +


λi∇2hi(x0)]x

′(0) + o(s2)

= 0 +
1

2
s2vT [∇2f(x0) +


λi∇2hi(x0)]v + o(s2)

≥ 1

2
s2a||v||2 + o(s2)

=
1

2
s2a+ o(s2)

= s2[
a

2
+

o(s2)

s2
] > 0

for small s > 0, since a
2 > 0 and lim

s→0

o(s2)
s2

= 0

Then f(x(s)) > f(x0) for small s > 0 Then x0 is a strict local min of f . 

6 Optimization with Inequality Constraints

Problem open Ω ⊆ Rn

f : Ω → R
h1, . . . , hk : Ω → R
g1, . . . , gl : Ω → R






min f(x)

x ∈ Ω subject to


h1(x) = 0, . . . , hk(x) = 0

g1(x) ≤ 0, . . . , gl(x) ≤ 0

(∗)
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Definition 1: activeness Let x0 satisfy the constraints.
We say that the constraint gi(x) ≤ 0 is active at x0 if gi(x0) = 0.
It is inactive at x0 if gi(x0) < 0.

Definition 2: regular point Suppose for some l′ ≤ l:

g1(x) ≤ 0, . . . , gl′(x) ≤ 0; gl′+1(x) ≤ 0, . . . , gl(x) ≤ 0

where g1, . . . gl′ active and the rest inactive.
We say that x0 is a regular point of the constraints if
{∇h1(x0), . . . ,∇hk(x0),∇g1(x0), . . . ,∇gl′(x0)} is linearly independent.

6.1 Kuhn-Tucker conditions: 1st order necessary condition for local minimum

open Ω ⊆ Rn

f : Ω → R
h1, . . . , hk, g1, . . . , gl : C

1 ∈ Ω
Suppose x0 ∈ Ω is a regular point of the constraints which is a local minimum, then

1.

∇f(x0) +

k

i=1

λi∇hi(x0) +

l

j=1

µj∇gj(x0) = 0

for some λi ∈ R and µj ≥ 0

2. µjgj(x0) = 0

Remark 1 Given x0,


gj(x) ≤ 0 active at x0 =⇒ gj(x0) = 0 =⇒ µjgj(x0) = 0

gj(x) ≤ 0 inactive at x0 =⇒ gj(x0) < 0 =⇒ µj = 0

=⇒ µj = 0 for all inactive gj at x0

Remark 2 It is possible for an active constraint to have zero multiplier.

Remark 3 µj ≥ 0 because ∇f and ∇g have opposite directions at a local minimum x0.

∇f(x0) + µ∇g(x0) = 0 =⇒ ∇f(x0) = −µ∇g(x0) =⇒ −µ < 0 =⇒ µ > 0

Is this true?

Idea of proof x0 is a local min of f subject to (*)
=⇒ x0 is a local min for equality constraints h1(x) = 0, . . . , hk(x) = 0+ active inequality constraints g1(x) ≤
0, . . . , gl′(x) ≤ 0
=⇒ x0 is a local min for h1(x) = 0, . . . , hk(x) = 0+ g1(x) = 0, . . . , gl′(x) = 0 =⇒ ∇f(x0)+

k
i=1 λi∇hi(x0)+l′

j=1 µj∇gj(x0) = 0
for some λi ∈ R and µj ∈ R.
Let µj = 0 for j = l′ + 1, . . . , l, then

∇f(x0) +

k

i=1

λi∇hi(x0) +

l

j=1

µj∇gj(x0) = 0
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6.2 2nd order necessary conditions for local minimum

Open Ω ⊆ Rn, f, h1, . . . , hk, g1, . . . , gl ∈ C2. Let x0 be a regular point of the constraints:

(†)

h1(x) = . . . = hk(x0) = 0

g1(x), . . . gl(x0) ≤ 0

Suppose x0 is a local min of f subject to (†). Then, ∃λi ∈ R, µj ≥ 0 s.t.

1. ∇f(x0) +
k

i=1 λi∇hi(x0) +
l

j=1 µj∇gj(x0) = 0

2. µjgj(x0) = 0 for all j

3. [∇2f(x0)+


λi∇2hi(x0)+


µj∇2gh(x0)]] is positive semi definite on tangent space to active constraints
at x0.

Proof. x0 local min for (†)
=⇒ x0 local min for only active constraints at x0.

=⇒

hi(x) = 0 ∀i
gj(x) = 0 j = 1, . . . , l′

=⇒ [∇2f(x0) +


λi∇2hi(x0) +


µj∇2gh(x0)] pos semi def on tangent space to active constraints. 

6.3 2nd order sufficient conditions

Open Ω ⊆ Rn, f, hi, gj ∈ C2 on Ω.
Problem: 





min f(x)

subject to


hi(x) = 0

gj(x) ≤ 0

Suppose ∃x0 feasible and λi, µj ∈ R s.t.

1. ∇f(x0) +
k

i=1 λi∇hi(x) +
l

j=1 µj∇gj(x0) = 0

2. µjgj(x0) = 0 all j

If the Hessian matrix, L(x0) = ∇2f(x0)+
k

i=1 λi∇2f(x0)+
l

i=1 µj∇2gj(x) is pos def on
˜̃Tx0-space of “strongly

active” constraints at x0.
Then x0 is a strict local min.

Remarks

1.

Active constraints at x0


hi(x) = 0 i = 1, . . . , k

gj(x) ≤ 0 j = 1, . . . , l′ =⇒ gj(x0) = 0

2.

Strongly active constraints at x0


hi(x) = 0 i = 1, . . . , k

gj(x) ≤ 0 j = 1, . . . , l′′ gj(x) is active at x0 and µj > 0

l′′ ≤ l′ ≤ l

3.
˜̃Tx0 = {v ∈ Rn|v ·∇hi(x0) = 0 all i and v ·∇gj(x0) = 0 for all j = 1, . . . , l′′}
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4. strongly active ⊆ active

=⇒ ˜̃Tx0 = (strongly active)⊥ ⊇ (active)⊥ = T̃x0

Proof. (details see another pdf by prof) Suppose x0 is NOT a (strict) local min.
claim: ∃ unit vector v ∈ R s.t.

1. ∇f(x0) · v ≤ 0

2. ∇hi(x0) · v = 0 i = 1, . . . , k

3. ∇gj(x0) · v ≤ 0 j = 1, . . . , l′

proof of claim: []
claim: ∇gj(x) · v = 0 for j = 1, . . . , l′′

proof of claim: []
=⇒ contradiction!
claim: ∃ unit vector v ∈ R s.t.

1. ∇f(x0) · v ≤ 0

2. ∇hi(x0) · v = 0 i = 1, . . . , k

3. ∇gj(x0) · v = 0 j = 1, . . . , l′′

proof of claim: [] 

7 Different Computation Methods for Solving Optimum

7.1 Newton’s Method

x0 ∈ I start
xn+1 = x0 − f ′(x0)

f ′′(x0)

Theorem Let f ∈ C3 on I.
Suppose x∗ ∈ I satisfies f ′(x∗) = 0 and f ′′(x∗) ∕= 0 (x∗ is a non-degenerate (non-singular) critical point).
Then the sequence of points {xn} generated by Newton’s method

xn+1 = xn − f ′(x0)

f ′′(x0)

converges to x∗ if x0 is sufficiently close to x∗.

Why do we need this method? In real life, we may not know the real function formula. We only have
data, using which we can approximate the function formula. In a way, Newton’s method is true “applied
mathematics”.

Proof of Theorem Let g(x) = f ′(x) so that xn+1 = xn − g(xn)
g′(xn)

By g ∈ C2, ∃α s.t. |g′(x1)| > α ∀x1 and |g′′(x2)| < 1
α ∀x2 in a neighbourhood of x∗ (choose α small enough).
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xn+1 − x∗ = xn − g(xn)

g′(xn)
− x∗ (1)

= xn − x∗ −
g(xn)− g(x∗)

g′(xn)
(g(x∗) = 0) (2)

=
−[g(xn)− g(x∗)− g′(xn)(xn − x∗)]

g′(xn)
(3)

=
1

2

g′′(ξ)

g′(xn)
(xn − x∗)

2 (4)

|xn+1 − x∗| =
1

2

g′′(ξ)

g′(xn)
|xn − x∗|2 <

1

2α2
|xn − x∗|2 (in small neighbourhood of x∗) (5)

ρ :=
1

2α2
|x0 − x∗| (choose x0 sufficiently close to x∗ s.t. ρ < 1) (6)

|x1 − x∗| <
1

2α2
|x0 − x∗|2 (7)

=
1

2α2
|x0 − x∗||x0 − x∗| (8)

= ρ|x0 − x∗| (9)

|x2 − x∗| <
1

2α2
|x1 − x∗|2 (10)

<
1

2α2
ρ2|x0 − x∗|2 (11)

=
1

2α2
|x0 − x∗|ρ2|x0 − x∗| (12)

< ρ2|x0 − x∗| (ρ < 1) (13)

|xn − x∗| < ρn|x0 − x∗| →
n→∞

0 (14)

=⇒ xn → x∗ (15)

proof of (4):
By 2nd order MVT,

g(x) = g(y) + g′(y)(x− y) +
1

2
g′′(ξ)(x− y)2

for some ξ ∈ [x, y].
Let x = x∗ and y = xn, then

g(x∗) = g(xn) + g′(xn)(x∗ − xn) +
1

2
g′′(ξ)(x∗ − xn)

2

=⇒ −[g(xn)− g(x∗)− g′(xn)(xn − x∗)] =
1

2
g′′(ξ)(xn − x∗)

2



Newton’s Method (generalized) f : Ω ⊆
open

Rn → R and f ∈ C3 on Ω

x0 ∈ Ω
xn+1 = xn − [∇2f(xn)]

−1∇f(xn)
(The algorithm requires ∇2f(xn) invertible and stops when ∇f(xn) = 0)

Note Newton’s method may fail to converge even if f(x) has a unique global min x∗ and x0 is arbitrarily
close to x∗
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Remark Newton’s method, if converge, converges to

1. local min

2. local max

3. saddle point

Example 7.1. Newton’s Method on Quadratic Function Let Q be a symmetric n×n invertible matrix. Define
quadratic form f(x) := 1

2x
TQx : Rn → R. Then the optima is x = 0.

Let x0 ∈ Rn, then
x1 := x0 −∇2f(x0)

−1∇f(x0) = x0 −Q−1Qx0 = 0

Newton’s method converges in one iteration.

7.2 Method of Steepest Descent (Gradient Method)

f : Ω ⊆
open

Rn → R, C1

Recall: Direction of steepest ascent at x0 is given by the direction of gradient ∇f(x0)

Algorithm of steepest descent x0 ∈ Ω

xk+1 = xk − αk∇f(xk)

where αk ≥ 0 satisfying f(xk − αk∇f(xk)) = min
α≥0

f(xk − α∇f(xk))

(keep going until you find the minimum)

Fact: algorithm is descending If ∇f(xk) ∕= 0, then f(xk+1) < f(xk)
Why? f(xk+1) = f(xk − αk∇f(xk)) ≤ f(xk − α∇f(xk)) for all 0 < α ≤ αk

Recall: d
ds |s=0f(xk − s∇f(xk)) = ∇f(xk) · (−∇f(xk)) = −|∇f(xk)|2 < 0

=⇒ f(xk+1) ≤ f(xk − α∇f(xk)) < f(xk) for small α

Fact: the method of steepest descent moves perpendicular steps

(xk+2 − xk+1) · (xk+1 − xk) = (−αk+1∇f(xk+1)) · (−αk∇f(xk)) (16)

= αkαk+1∇f(xk+1) ·∇f(xk) (17)

(18)

If αk = 0, then we are done.
If αk ∕= 0, then

∇f(xk+1) = min
α≥0

f(xk − α∇f(xk)) (19)

=⇒ d

dα
|α=αk

f(xk − α∇f(xk)) = (−∇f(xk)) ·∇f(xk − αk∇f(xk)) = 0 (20)

=⇒ αkαk+1∇f(xk+1) ·∇f(xk) = 0 (21)

Note This method is not the most efficient. May take infinite steps to converge.
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Theorem (Convergence of Steepest Descent) f ∈ C1 on Ω ⊆
open

Rn

Let {xk} be sequence generated by steepest descent.
xk+1 = xk − αk∇f(xk)
If {xk} is “bounded in Ω” (i.e. ∃ compact set K ⊂ Ω s.t. xk ∈ K for all k)
Then every convergent subsequence of {xk} converges to a critical point x∗ ∈ Ω of f : ∇f(x∗) = 0

Proof. xk ∈ compact K =⇒ subsequence xki → x∗ ∈ K
Since f(x0) ≥ f(x1) ≥ f(x2) ≥ . . . and f(xki) ↘ f(x∗)
Suppose by contradiction that ∇f(x∗) ∕= 0
xki → x∗ =⇒ ∇f(xki) → ∇f(x∗)
Let yki = xki − αki∇f(xki) = xki+1. Then yki → y∗. Then

f(yki) = f(xki+1) = min
α≥0

f(xi − α∇f(xki)) (22)

f(yki) ≤ f(xki − α∇f(xki)) for all α ≥ 0 (23)

lim
i→∞

f(y∗) ≤ f(x∗ − α∇f(x∗)) for all α ≥ 0 (24)

f(y∗) ≤ min
α≥0

f(x∗ − α∇f(x∗)) < f(x∗) (25)

f(y∗) < f(x∗) (26)

(27)

But f(y∗) = lim
i→∞

f(yki) = lim
i→∞

f(xki+1) = f(x∗), so we have a contradiction. 

Steepest descent: Quadratic case Let f follow the general quadratic form

f(x) =
1

2
xTQx− bTx

where b, x ∈ Rn and Q is an n× n positive definite matrix.
Let 0 < λ = λ1 ≤ λ2 ≤ . . . ≤ λn = Λ be eigenvalues of Q.
Recall that if Q pos-def, then there is a unique minimum x∗ such that Qx∗ − b = 0 ⇐⇒ x∗ = Q−1b
Define q(x) := 1

2(x− x∗)TQ(x− x∗) = f(x) + const
Note that q(x) ≥ 0 and q(x∗) = 0.
Define g(x) := Qx− b = ∇q(x) = ∇f(x)
So using the method of steepest descent:

xk+1 = xk − αkg(xk)

Derive the formula for αk:
αk minimizes f(xk − αg(xk))

0 =
d

dα
|α=αk

f(xk − αg(xk)) (28)

= ∇f(xk − αkg(xk)) · (−g(xk)) (29)

= −[Q(xk − αkg(xk))− b] · (g(xk)) (30)

= −(Qxk − b) · g(xk) (31)

= −|g(xk)|2 + αkg(xk)
TQg(xk) (32)

=⇒ αk =
|g(xk)|2

g(xk)TQg(xk)
(33)

=⇒ xk+1 = xk − αkg(xk) (34)

= xk −
|g(xk)|2

g(xk)TQg(xk)
g(xk) (35)
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Claim:

q(xk+1) =


1− |g(xk)|4

(g(xk)TQg(xk))(g(xk)TQ−1g(xk))


g(xk)

Proof.

q(xk+1) = q(xk − αkg(xk)) (36)

=
1

2
(xk − αkg(xk)− x∗)

TQ(xk − αkg(xk)− x∗) (37)

=
1

2
(xk − x∗ − αkg(xk))

TQ((xk − x∗)− αkg(xk)) (38)

=
1

2
(xk − x∗)

TQ(xk − x∗)− αkg(xk)
TQ(xk − x∗) +

1

2
α2
kg(xk)

TQg(xk) (39)

= q(xk)− αkg(xk)
TQ(xk − x∗) +

1

2
α2
kg(xk)

TQg(xk) (40)

=⇒ q(xk)− q(xk+1) = −1

2
α2
kg(xk)

TQg(xk) + αkg(xk)
TQ(xk − x∗) (41)

yk := xk − x∗ (42)

q(xk)− q(xk+1)

q(xk)
=

−1
2α

2
kg(xk)

TQg(xk) + αkg(xk)
TQyk

1
2y

T
k Qyk

(43)

=
2αkg(xk)

TQyk − α2
kg(xk)

TQg(xk)

yTk Qyk
(44)

(gk := g(xk) = Qxk − b = Qxk −Qx∗ = Q(xk − x∗) = Qyk =⇒ yk = Q−1gk) (45)

=
2αk|gk|2 − α2

kg
T
k Qgk

gTk Q
−1gk

(46)

=
2 |gk|4
gTk Qgk

− |gk|4
gTk Qgk

gTk Q
−1gk

(47)

=
|gk|4

(gTk Qgk)(g
T
k Q

−1gk)
(αk = |g(xk)|2

g(xk)TQg(xk)
)

=⇒ q(xk)− q(xk+1) =


|gk|4

(gTk Qgk)(g
T
k Q

−1gk)


q(xk) (48)

=⇒ q(xk+1) = q(xk)


1− |gk|4

(gTk Qgk)(g
T
k Q

−1gk)


(49)

≤ (1− 4λΛ

(λ+ Λ)2
)q(xk) (By Kantorovich Inequality)

=⇒ q(xk+1) ≤
(Λ− λ)2

(λ+ Λ)2
q(xk) (50)



Kantorovich Inequality Q : n× n positive definite symmetric matrix
λ = λ1 ≤ λ2 ≤ . . . ≤ λn = Λ
For any v ∈ Rn:

|v|4
(vTQv)(vTQ−1v)

≥ 4λΛ

(λ+ Λ)2

Theorem: Steepest Descent in Quadratic Case For any x0 ∈ Rn, method of steepest descent converges
to the unique min point x∗ of f .
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Furthermore, for q(x) := 1
2(x−x∗)Q(x−x∗), where Q symmetric positive definite and 0 < λ = λ1 ≤ λ2 ≤ . . . ≤

λn = Λ,

q(xk+1) ≤
(Λ− λ)2

(λ+ Λ)2
q(xk)

Let r := (Λ−λ)2

(λ+Λ)2
, then

q(xk) ≤ rkq(x0)

for all k. As k → ∞, q(xk) → 0.

Notes

1. xk ∈ {x ∈ Rn|q(x) ≤ rkq(x0)} = SLk

(sublevel set of function q(x))
Note that SLk is strictly decreasing. Furthermore, note that x∗ is the only point satisfying the inequality
at the limit:

q(x∗) = 0 = lim
k→∞

q(x0)

Therefore, lim
k→∞

SLk = {0}, and xk → x∗.

2. r = ( (Λ−λ)
(λ+Λ))

2 = (Λ/λ−1
Λ/λ+1)

2 depends only on the ratio Λ
λ = “condition number of Q”

case Λ
λ = 1 =⇒ r = 0 =⇒ 0 ≤ q(x1) ≤ 0 · q(x0) =⇒ q(x1) = 0 =⇒ x1 = x∗

(Gradient descent converges to the unique global minimum in only one iteration.)
case Λ

λ >> 1 =⇒ r ≃ 1
(worst case, converges very flow)

7.3 Method of Conjugate Direction

Motivation Method of conjugate directions is designed for quadratic functions with form f(x) = 1
2x

TQx −
bTx. For other functional forms, one can approximate the function using quadratic form firstly and then apply
method of conjugate directions.

Definition: Q-orthogonality Let Q be a symmetric matrix. Two vectors d, d′ ∈ Rn are Q-orthogonal (or
Q-conjugate) if

dTQd′ = 0

A finite set of d0, . . . , dk is called Q-orthogonal set if dTi Qdj = 0 for all i ∕= j.

Example 1 Q is an identity matrix. d, d′ are Q-orthogonal iff they are orthogonal.

Example 2 If d, d′ are two eigenvectors with different eigenvalues, then they are Q-orthogonal.

Proof. Suppose Qv = λv and Qw = λ′w so λ ∕= λ′

< v,Qw > =< v,λ′w >= λ′ < v,w > (51)

=< QT v, w >=< Qv,w >=< λv, w >= λ < v,w > (52)

=⇒ (λ− λ′)〈v, w〉 = 0 (53)

Since (λ− λ′) ∕= 0, them we have 〈v, w〉 = 0.

=⇒ vTQw = 〈v,Qw〉 = λ〈v, w〉 = 0
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Example 3 IfQ is an n×n symmetric matrix, then there exists an orthogonal basis of eigenvectors d0, . . . , dn−1

Claim: They are also Q-orthogonal.

Proof. dTi Qdj = dTi (λdj) = λdTi dj = 0 

Proposition Let Q be a symmetric positive definite matrix. Let d0, . . . , dk be a set of (non-zero) Q-orthogonal
vectors. Then d0, . . . , dk are linearly independent.

Proof. Assume α0d0 + . . .+ αkdk = 0 for αi ∈ R.
Multiply the whole equation by dTi Q:

α0 d
T
i Qd0  
=0

+ . . .+ αi d
T
i Qdi  
>0

+ . . .+ αk d
T
i Qdk  
=0

= 0

which implies αid
T
i Qdi = 0 and αi = 0.

This is true for every i. Therefore d0, . . . , dk are linearly independent. 

Lemma (Theorems covered so far)

1. di, dj are Q-orthogonal if dTi Qdj = 0;

2. Eigen-vectors with different eigenvalues are Q-orthogonal;

3. Matrix Q symmetric =⇒ there exists an orthogonal basis =⇒ the set of basis is Q-orthogonal as well;

4. Q-orthogonal vectors are linearly independent.

Example 4 (Special case: Method of Conjugate Direction on Quadratic Functions). Let Q be a positive
definite symmetric n× n matrix. The problem is

min f(x) =
1

2
xTQx− bTx

Recall that the unique global minimum is x∗ = Q−1b.
Let d0, d1, . . . , dn−1 be non-zero Q-orthogonal vectors.
Note that they are linearly independent by the previous theorem.
Therefore, they form a basis of Rn.
The global minimum can be represented as

x∗ =
n−1

j=0

αjdj , αj ∈ R

For every j, the following holds:
dTj Qx∗ = αjd

T
j Qdj

=⇒ αj =
dTj Qx∗

dTj Qdj

Algorithm: Method of Conjugate Directions Let Q be a positive definite symmetric n× n matrix. and
{dj}n−1

j=0 be a set of non-zero Q-orthogonal vectors, note that they form a basis of Rn.
Given initial point x0 ∈ Rn, the method of conjugate direction generates a sequence of points {xk}nk=0 as the
following:

xk+1 ← xk + αkdk

αk := −〈gk, dk〉
dTkQdk

gk := ∇f(xk)
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Theorem Given the method of conjugate, the sequence of points generated eventually reaches the global
minimum. That is, xn = x∗.

Proof. Let x∗, x0 ∈ Rn, consider

x∗ − x0 =

n−1

j=0

βjdj (54)

⇐⇒ x∗ = x0 +

n−1

j=0

βjdj (55)

dTj Q(x∗ − x0 = dTj Q(

n−1

j=0

βjdj) (56)

= βjd
T
j Qdj (57)

=⇒ βj =
dTj Q(x∗ − x0)

dTj Qdj
(58)

Note that the algorithm generates the sequence as following:

xk = x0 +

k−1

j=0

αjdj (59)

=⇒ (xk − x0) =

k−1

j=0

αjdj (60)

=⇒ dTkQ(xk − x0) =

k−1

j=0

αjd
T
kQdj = 0 (61)

Therefore,

βk =
dTkQ(x∗ − x0)

dTkQdk
(62)

=
dTkQ(x∗ − x0)− dTkQ(xk − x0)

dTkQdk
(63)

=
dTkQ(x∗ − xk)

dTkQdk
(64)

=
dTk (Qx∗ −Qxk)

dTkQdk
(65)

=
dTk (b−Qxk)

dTkQdk
(The first order necessary condition suggests Qx∗ = b)

= −
dTk (Qxk − b)

dTkQdk
(66)

= −
dTk∇f(xk)

dTkQdk
(Assuming f is quadratic)

= αk (67)
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Consequently,

x∗ = x0 +

n−1

j=0

βjdj (68)

= x0 +

n−1

j=0

αjdj (69)

= xn (70)



7.3.1 Geometric Interpretations of Method of Conjugate Directions

Theorem Let f ∈ C1(Ω,R), where Ω is a convex subset of Rn, then x0 is a local minimum of f on Ω if and
only if

∇f(x0) · (y − x0) ≥ 0 ∀y ∈ Ω

Example Now consider the special case in which Ω is an affine hyperplane, that is,

Ω = {x ∈ Rn : cx+ b = 0}

where dim(Ω) is n− 1.
Note that for every y ∈ Ω,∇f(x0) · (y−x0) ≥ 0. For any feasible direction a := y−x0 at point x0, by definition
of hyperplane, −a is a feasible direction as well.
Consequently, a ·∇f(x0) = 0 for every feasible direction. That is, ∇f(x0) ⊥ Ω. 

Geometric Interpretation Let d0, d1, . . . , dn−1 be a set of non-zero Q-orthogonal vectors in Rn. Let Bk =
Span{d0, . . . , dk−1} for k = 0, 1, . . . , n.
Note:

•
B0 = {0} ⊆ B1 = 〈d0〉 ⊆ B2 = 〈d0, d1〉 ⊆ . . . ⊆ Bn = 〈d0, . . . , dn−1〉 = Rn

•
dimBk = k

•
x0 +B0 ⊆ x0 +B1 ⊆ . . .

Theorem The sequence {xk} generated from x0 ∈ Rn by conjugate directions method has the property that
xk minimizes f(x) = 1

2x
TQx− bTx on the affine hyperplane x0 +Bk.

Proof. Recall that xk is the minimizer of f(x) on x0 +Bk ⇐⇒ ∇f(xk) ⊥ x0 +Bk

Enough to prove that ∇f(xk) ⊥ Bk.

Remarks: x0 here is like a bias which shifts the subspace by a “constant”. Also, “∇f(xk) ⊥ Bk” here means
that ∇f(xk) is perpendicular to every basis vector of Bk.

We prove this by induction on k.
Notation: ∇f(xk) = Qxk − b =: gk.
Base case: k = 0 B0 = {0} =⇒ g0 ⊥ B0
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Inductive Step: Assume that gk ⊥ Bk, show gk+1 ⊥ Bk+1

Since
xk+1 = xk + αkdk

then
Qxk+1

− b
  

gk+1

= Qxk
− b  

gk

+αkQdk

gTk+1Bk = 〈d0, . . . , dk−1〉 (71)

gTk+1dk = (gk + αkQdTk dk  
gk+1

)Tdk (72)

= gTk dk + αkd
T
kQdk (73)

= gTk dk + (−
gTk dk

dTkQdk
)dTkQdk (74)

= 0 (75)

This implies that gk+1 ⊥ dk
For 0 ≤ i < k,

gTk+1 · di = (gk + αkQdk)
Tdi (76)

= gTk di
=0

+αkd
T
kQdi  
=0

(77)

= 0 (78)

Therefore, gk+1 ⊥ d0, d1, . . . , dk
Hence gk+1 ⊥ 〈d0, d1, . . . , dk〉 = Bk 

Corollary xn minimizes f(x) on x0 +Bn (which is Rn)
i.e. xn = x∗

Corollary 0 ≤ q(xk) = min
x∈x0+Bk

q(x) ≤ q(xk−1) = min
x∈x0+Bk−1

q(x)

Corollary


min f(x)

x ∈ x0 +B1

(79)

=⇒

min f(x0 + td0)

t ∈ R
(Since x0 +B1 = {x0 + td0|t ∈ R})

=⇒ 0 =
d

dt
|t=t0f(x0 + td0) = ∇f(x0 + t0d0) · d0 (where t0 is such that x1 = x0 + t0d0)



8 Calculus of Variations

Note: infinite dimensional optimization.
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Comparison with finite dimensions

finite dimensional ∞-dimensional

problem min f(x) min F [u]

constraint x ∈ M u ∈ A
note set of points in Rn space of functions

Model model
A = {u : [0, 1] → R|u ∈ C1 s.t. u(0) = u(1) = 1}

Note: We call F a “Functional”. It maps a function to a real number.

Notation Write u(·) for a function u.

8.1 Example

F [u(·)] = 1
2

´ 1
0 {u(x)

2 + u′(x)2} dx.
min F [u(·)]
u(·) ∈ A

means: Find u∗(·) ∈ A s.t. F [u∗(·)] ≤ F [u(·)] for all u(·) ∈ A.

Plan

1. We derive 1st order necessary conditions for a local min;

2. Find a function u∗(·) satisfying these conditions;

3. Check this candidate u∗(·) is in fact a minimizer.

We reduce this problem to (many) 1-dimensional problems.
Step 1: Derive 1st order necessary conditions for a local min
Fix v(·) ∈ C1 on [0, 1] s.t. v(0) = 0 = v(1).
Suppose u∗(·) ∈ A is a minimizer.
Notice that u∗(·) + sv(·) ∈ A ∀s ∈ R.
Let f : R → R s.t. f(s) := F (u∗(·) + sv(·)).
If u∗(·) minimizes F , then s = 0 minimizes f , then f ′(0) = 0.
Then f(0) = F [u∗(·)] ≤ F [u∗(·) + sv(·)] = f(s)

f ′(0) =
d

ds
|s=0 F [u∗(·) + sv(·)]  

f(s)

(80)

=
d

ds
|s=0

1

2

ˆ 1

0
{[u∗(x) + sv(x)]2 + [u∗

′
(x) + sv′(x)]2} dx (81)

=
1

2

d

ds
|s=0

ˆ 1

0
{u∗(x)2 + u∗

′
(x)2} dx+

d

ds
|s=0s

ˆ 1

0
{u∗(x)v(x) + u∗

′
(x)v′(x)} dx+

d

ds
|s=0

s2

2

ˆ 1

0
{v(x)2 + v′(x)2} dx

(82)

=

ˆ 1

0
{u∗(x)v(x) + u∗

′
(x)v′(x)} dx (83)

So far, if u∗(·) is a minimizer of F over A, then

ˆ 1

0
{u∗(x)v(x) + u′∗(x)v′(x)} dx = 0 (♥)
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for all v(·) ∈ C1 on [0, 1] and v(0) = 0 = v(1). We call this a “primitive form of 1st order condition”, and call
v(·) the test functions.
Recall Integration by parts:

ˆ 1

0
w(x)v′(x) dx = w(x)v(x)|10 −

ˆ 1

0
w′(x)v(x) dx

(♥) =

ˆ 1

0
u∗(x)v(x) dx+

ˆ 1

0
u′∗(x)v′(x) dx (84)

=

ˆ 1

0
u∗(x)v(x) dx+ u′∗(x)v(x)|10  

=0 (v(0)=v(1)=0)

−
ˆ 1

0
u′′∗(x)v(x) dx (85)

=

ˆ 1

0


u∗(x)− u′′∗(x)


v(x) dx (86)

= 0 (87)

For all test functions v(·).

Lemma: Fundamental Lemma of Calculus of Variations Suppose g is continuous function on interval
[a, b]. If

ˆ b

a
g(x)v(x) dx = 0

for all test functions v(·), then
g(x) ≡ 0 on [a, b].
Then by Fundamental Lemma of Calculus of Variations, (♥) =⇒ u∗(x) − u′′∗(x) ≡ 0, which is the 1st order
necessary condition for u∗(·).
Step 2: Find a function u∗(·) satisfying these conditions


u∗(x) = u′′∗(x)

u∗(0) = u∗(1) = 1
=⇒ u∗(x) = c1e

x + c2e
−x (88)


1 = u∗(0) = c1 + c2

1 = u∗(1) = c1e+ c2
1
e

=⇒ c1 =
1

e+ 1
, c2 =

e

e+ 1
(89)

=⇒ u∗(x) =
1

e+ 1
ex +

e

e+ 1
e−x (90)

Step 3: check u∗(·) is in fact a global minimizer.
We derived that

F [u∗(·) + sv(·)] = F [u∗(·)] + s

ˆ 1

0
{u∗(x)v(x) + u′∗(x)v′(x)} dx

  
=0

+
s2

2

ˆ 1

0
{v(x)2 + v′(x)2} dx

  
≥0

F [u∗(·)] ≤ F [u∗(·) + sv(·)]
for all test functions v(·) and all s ∈ R. In particular, let s = 1, then

F [u∗(·)] ≤ F [u∗(x) + v(·)]
for all test functions v(·). In particular, let v(·) = u(·)− u∗(·), then

F [u∗(·)] ≤ F [u(·)]

for all u(·) ∈ A.
Note: The space of v(·) is a vector space, but A is not a vector space (since u(·) ∕= 0). It is a translate of a
vector space.
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Lemma: Fundamental Lemma of Calculus of Variations Suppose g is continuous function on interval
[a, b]. If

ˆ b

a
g(x)v(x) dx = 0

for all test functions v(·), then
g(x) ≡ 0 on [a, b].

Proof. Suppose for contradiction that g(x) ∕≡ 0 on [a, b].
WLOG, g(x0) > 0 for some x0 ∈ (a, b). This implies that g > 0 on (c, d) ⊊ (a, b).
Let v(·) be a continuous function s.t.

v(·)

> 0 on (c, d)

= 0 otherwise

Then
ˆ b

a
g(x)v(x) dx =

ˆ d

c
g(x)v(x)  

>0

dx > 0

which leads to a contradiction. 

8.2 Classical Problem: the Brachistochrone

Galileo (1638): Find the curve connecting A and B on which a point mass moves without fiction under the
influence of gravity in the least time possible.
Johann Bernoulli (1696): Revisit the problem and sent invitations
6 correct solutions sent (1697):
Leibniz, Johann, Jacob, l’Hospital, Von Tschinhaus, Anonymous → Newton (*)
This answer is the beginning of Calculus of Variations

8.3 General class of problems in Calculus of Variations

A = {u : [a, b] → R|u ∈ C1, u(a) = A, u(b) = B}

F [u(·)] =
ˆ b

a
L(x, u(x), u′(x)) dx

where L(x, z, p) : [a, b]× R× R → R

Model example L(x, z, p) = z2+p2

2 , F [u(·)] =
´ 1
0

u(x)2+u′(x)2

2 dx
Notation: 

Lz(x, z, p) =
∂
∂zL(x, z, p)

Lp(x, z, p) =
∂
∂pL(x, z, p)

Definition Given u(·) ∈ A, suppose ∃ function g(·) on [a, b] s.t.

d

ds
|s=0F [u(·) + sv(·)] =

ˆ b

a
g(x)v(x) dx

for all test functions v(·), then g(·) is called the variational derivative of F at u(·),
denoted by δF

δu (u)(·) or
δF
δu (u) or

δF
δu .
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Analogy In finite dimensions:

d

ds
|s=0f(u+ sv) = ∇f(u) · v (91)

=


i

∇f(u)ivi (92)

for all v ∈ Rn

In Calculus of Variations (∞ dimensional):

d

ds
|s=0F [u(·) + sv(·)] =

ˆ b

a

δF

δu
(u)(x)v(x) dx (where possible)

∼


x

δF (u)

δu
(x)v(x) (a kind of an infinite sum)

Model example L(x, z, p) = z2+p2

2 , F [u(·)] =
´ 1
0

u(x)2+u′(x)2

2 dx

d

ds
|s=0F [u(·) + sv(·)] = . . . =

ˆ 1

0
[u(x)− u′′(x)]v(x) dx

for all test functions v(·)
Therefore δF

δu (u)(x) = u(x)− u′′(x)

Lemma (1st order necessary conditions satisfied by a solution u∗(·) ∈ C1)

A = {u : [a, b] → R|u ∈ C1, u(a) = A, u(b) = B}

If u∗(·) ∈ A minimizes F over A, and if δF
δu (u

∗)(·) exists and is continuous, then it must satisfy

δF

δu
(u∗)(·) ≡ 0

Proof. note: u∗(·) + sv(·) ∈ A
If u∗(·) is a minimizer of F , then

F [u∗(·) ≤ F [u∗(·) + sv(·)]
for all test functions v.
Define f(s) := F [u∗(·) + sv(·)], then f(0) ≤ f(s) for all s ∈ R.
Then

ˆ b

a

δF

δu
(u∗)(·)v(x) dx =

d

ds
|s=0F [u∗(·) + sv(·)] (∂F∂u (u

∗)(·) exists)

=
d

ds
|s=0f(s) (93)

= f ′(0) = 0 (0 is the global minimize of f)

This implies that δF
δu (u

∗)(·) ≡ 0. 

Theorem: Leibniz Integral Rule Let f(x, t) be a function such that both f(x, t) and its partial derivative
∂
∂xf(x, t) is continuous w.r.t. t and x in some region of the (x, t)-plane, including a(x) ≤ t ≤ b(x), x0 ≤ x ≤ x1.
Also suppose that the functions a(x) and b(x) are both continuous and both have continuous derivatives for
x0 ≤ x ≤ x1. Then, for x0 ≤ x ≤ x1,

d

dx


ˆ b(x)

a(x)
f(x, t) dt


= f(x, b(x)) · d

dx
b(x)− f(x, a(x)) · d

dx
a(x) +

ˆ b(x)

a(x)

∂

∂x
f(x, t) dt

Note that if a(x) and b(x) are constants rather than functions of x, we have a special case of Leibniz’s rule:

d

dx


ˆ b

a
f(x, t) dt


=

ˆ b

a

∂

∂x
f(x, t) dt
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Theorem
A = {u : [a, b] → R|u ∈ C1, u(a) = A, u(b) = B}

F [u(·)] =
ˆ b

a
L(x, u(x), u′(x)) dx

where L ∈ C2.
Then if u(·) ∈ C1, then δF

δu (u)(·) exists, is continuous, and

δF

δu
(u)(x) = − d

dx
[Lp(x, u(x), u

′(x))] + Lz(x, u(x), u
′(x))

Let v be a test function (v(a) = v(b) = 0)

d

ds
|s=0F [u(·) + sv(·)] = d

ds
|s=0

ˆ b

a
L(x, u(x) + sv(x), u′(x) + sv′(x)) dx (94)

=

ˆ b

a

d

ds
|s=0L(x, z, p) dx (By Leibniz’s rule)

=

ˆ b

a
Lz(·)v(x) + Lp(·)v′(x) dx (95)

=

ˆ b

a
Lz(·)v(x) dx+

ˆ b

a
Lp(·)v′(x) dx (96)

=

ˆ b

a
Lz(·)v(x) dx+ Lp(·)v(x)|ba −

ˆ b

a

d

dx
Lp(·)v(x) dx (Integration by parts)

=

ˆ b

a
[− d

dx
Lp(·) + Lz(·)]v(x) dx ∀ test functions v(·) (97)

By the definition of variational derivative, it follows that

δF

δu
(u)(x) = − d

dx
[Lp(x, u(x), u

′(x))] + Lz(x, u(x), u
′(x))

Furthermore, since L(·) ∈ C2,− d
dxLp(·) and Lz(·) are continuous. Moreover, u(·) and u′(·) are continuous, so is

the composite function. Hence the variational derivative is continuous.

Model example L(x, z, p) = z2+p2

2 , F [u(·)] =
´ 1
0

u(x)2+u′(x)2

2 dx
Lz(x, z, p) = z =⇒ Lz(x, u(x), u

′(x)) = u(x)
Lp(x, z, p) = p =⇒ Lp(x, u(x), u

′(x)) = u′(x)

δF

δu
(u(·)) = − d

dx
[u′(x)] + u(x) = −u′′(x) + u(x)

If u∗(·) ∈ A is a minimizer, then −u′′(x) + u(x) = 0

Example 8.1 (min arclength). We will show that the straight line gives the shortest path.

min F [u(·)] =
ˆ b

a
(1 + u′(x)2)

1
2 dx = arclength of u(·)

A = {u : [a, b] → R|u ∈ C1, u(a) = A, u(b) = B}

Then L(x, z, p) = (1 + p2)
1
2 , Lz = 0 and Lp =

p

(1+p2)
1
2

If u∗(·) is a minimizer, then

− d

dx

u′(x)

(1 + u′(x))
1
2

≡ 0
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=⇒ u′(x)

(1+u′(x))
1
2
= const

=⇒ u′(x)2 = const(1 + u′(x)2)
Then u′(x) = α for some α ∈ R.
Then u(x) = αx+ β for some β ∈ R.

Example 8.2 (Surface Area of Revolution). Suppose u(·) ∈ C1 on [a, b], the surface area of rotating the curve
u connecting a and b can be computed as

F [u(·)] =
ˆ b

a
2πu(x)


1 + u′(x) dx

For simplicity, assume u > 0. In this example, the space of feasible functions is

A = {u : [a, b] → R : u ∈ C1, u(a) = A, u(b) = B, u > 0}

If u(·) solves the minimization problem, it must be the case that

δF

δu
(u)(·) ≡ 0 (†)

Notice
L(x, z, p) = 2πz


1 + p2

Lz(x, z, p) = 2π


1 + p2

Lp(x, z, p) = 2πz
p

1 + p2

Claim: the family of u(·) = β cosh(x−α
β ) solves the necessary condition †.

Instance 1 When a = 0, b = 1, A = B = 1, plugging in the initial condition gives




β cosh


0−α
β


= 1

β cosh

1−α
β


= 1

(98)

solving above system of equations provides the solution.
Instance 2 When a = 0, b = 1, A = 1, B = 0, plugging in these initial conditions gives





β cosh


0−α
β


= 1

β cosh

1−α
β


= 0

(99)

because cosh > 0, the second equation suggests β = 0, but in this case the first equation would never hold.
Therefore, there is no solution to this calculus of variation.
In face, the surface area is minimized by

u(x) =


1 if x = 0

0 otherwise
(100)

8.4 Euler-Lagrange Equations in Rn

Setup

F [u(·)] =
ˆ b

a
L(x, u(x), u′(x)) dx (101)

u : [a, b] → Rn (102)

L(x, z, p) : [a, b]× Rn × Rn → R (103)

A :=

u : [a, b] → Rn : u ∈ C1, u(a) = A, u(b) = B


(104)
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Theorem 8.1 (Euler-Lagrange Equations in Vector Forms).

− d

dx
∇pL(x, z, p) +∇zL(x, z, p) = 0 ∈ Rn (†) (105)

Example 8.3 (Classical Lagrangian Mechanics).

V (x) : Rn → R potential energy (106)

1

2
m||v||22 kinetic energy (107)

L(t, x, v) :=
1

2
m||v||22 − V (x) difference between KE and PE (108)

Consider a path x(t) in Rn, define objective function as

F [x(·)] =
ˆ b

a
L(t, x(t), x′(t)) dt (109)

=

ˆ b

a

1

2
m||ẋ(t)||22 − V (x(t)) dt (110)

The Euler-Lagrange equation in vector form implies

− d

dt
∇(3)L(t, x(t), ẋ(t)) +∇(2)L(t, x(t), ẋ(t)) = 0 (111)

=⇒ − d

dt
mẋ(t)−∇V (x(t)) = 0 (112)

=⇒ mẍ(t) = ∇V (x(t)) (††) (113)

Remark 8.1. (††) is often referred to as Newton’s second law : object moves along the path on which the total
conversion between kinetic and potential energies is minimized.

Example 8.4 (3-Dimensional Pendulum). Suppose the pendulum is moving on a path such that the total
conversion between kinetic and potential energies is minimized, that is

min

ˆ b

a
L(t) dt =

ˆ b

a

1

2
m(ẋ(t)2 + ẏ(t)2 + ż(t)2)−mgz(t) dt (114)

with the restriction that ||x(t)|| = ℓ, where ℓ is the radius of the sphere.
The restriction can be embodied by framing the problem using spherical coordinates:

x := ℓ cosϕ sin θ (115)

y := ℓ sinϕ sin θ (116)

z := −ℓ cos θ (117)

where the path of motion can be characterized using (θ(t),ϕ(t)).
The objective function is therefore

L


t,


θ(t)
ϕ(t)


,


θ̇(t)
ϕ̇(t)


=

1

2
mℓ2(θ̇2 + ϕ̇2 sin2(θ)) +mgℓ cos θ (118)

So the Euler-Lagrange equation can be written as

− d

dt
∇(3)L


t,


θ(t)
ϕ(t)


,


θ̇(t)
ϕ̇(t)


+∇(2)L


t,


θ(t)
ϕ(t)


,


θ̇(t)
ϕ̇(t)


= 0 (119)
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8.5 Equality constraints

8.5.1 Isoperimetric constraints

Recall: finite dimensional case

f, g : Rn → R (120)




min
x∈Rn

f(x)

g(x) = const
(121)

Suppose regular point x∗ (∇g(x∗) ∕= 0) is a minimizer. Then ∃λ ∈ R s.t. ∇f(x∗) + λ∇g(x∗) = 0 (by Lagrange
multipliers)

Remark 8.2. x∗ minimizes f +λg. The Lagrange multipliers convert the original problem to an unconstrained
optimization problem L(x,λ) = f(x) + λg(x).

Infinite dimensional case

F [u(·)] =
ˆ b

a
LF (x, u(x), u′(x)) dx (122)

G[u(·)] =
ˆ b

a
LG(x, u(x), u′(x)) dx (123)

(124)




min

u(·)∈A
F [u(·)]

G[u(·)] = const

Suppose regular point u∗(·) ( δGδu (u∗) ∕= 0) is a minimizer, then ∃λ ∈ R s.t.

δF

δu
(u∗) + λ

δG

δu
(u∗) ≡ 0

Remark 8.3. u∗ minimizes F + λG.

Example 8.5.

A := {u : [−a, a] → R, u ∈ C1, u(−a) = u(a) = 0} (125)

F [u(·)] =
ˆ b

a
u(x) dx (126)

G[u(·)] =
ˆ b

a


1 + u′(x) dx = l > 0 note that G is arg length (127)





min
u∈A

(−F )[u(·)]

G[u(·)] = l
(128)

Let u∗(·) be a minimizer, then
δF

δu
= − d

dx
LF
p + LF

z

δG

δu
= − d

dx
LG
p + LG

z

Then Euler-Lagrange equations suggests

− d

dx
LF
p + LF

z + λ(− d

dx
LG
p + LG

z ) = 0

=⇒ λ2 u′∗(x)
2

1 + u′∗(x)
2
= (C1 − x)2(†)
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Claim: Solution u∗(·) to (†) satisfies

(x− C1)
2 + (u∗(x)− C2)

2 = λ2

So that the graph of u∗(·) lies on a circle, and our solution is the semi-circle that has length l.
Check :

d

dx


2(x− C1) + 2(u∗(x)− C2)u

′
∗(x)


= 0 (129)

which implies

u′∗(x) = − x− C1

u∗(x)− C2
(130)

=⇒ u′∗(x)
2 =

(x− C1)
2

(u∗(x)− c2)2
(§) (131)

Also,

(u′∗(x)
2)(u∗(x)− C2)

2 = (x− C1)
2 + (u∗(x)− C2)

2 = λ2 (132)

=⇒ (u∗(x)− C2)
2 =

λ2

1 + u′∗(x)
2

(§§) (133)

Combine (§) and (§§),

λ2

1 + u′∗(x)
2
u′∗(x)

2 = (x− C1)
2 (134)

It is possible to solve for u:






x = −a, y = 0, (−a− C1)
2 + (0− C2)

2 = λ2

x = +a, y = 0, (+a− C)1)2 + (0− C2)
2 = λ2

´ a
−a


1 + u′(x)2 dx = l

8.5.2 Holonomic constraints

Setup(3-Dim Special Case) Minimize

F [x(·), y(·), z(·)] =
ˆ b

a
L(t, x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)) dt

with constraint
H(x(t), y(t), z(t)) ≡ 0

Theorem 8.2 (Euler-Lagrange Equations). Let x∗(t) :=




x∗(t)
y∗(t)
z∗(t)



 be the minimizer subject to the constraint,

then 


δF
δx [x∗(·), y∗(·), z∗(·)](t)
δF
δy [x∗(·), y∗(·), z∗(·)](t)
δF
δz [x∗(·), y∗(·), z∗(·)](t)



+ λ(t)




Hx[x∗(·), y∗(·), z∗(·)](t)
Hy[x∗(·), y∗(·), z∗(·)](t)
Hz[x∗(·), y∗(·), z∗(·)](t)



 = 0 ∀t ∈ R

where λ : [a, b] → R is a function.


