
CSC373 Fall 2019

Lecture Notes (Archived)

Yuchen Wang

March 15, 2025

Contents

1 Divide & Conquer 2
1.1 Master Theorem . 2
1.2 Counting Inversions . 3
1.3 Closest Pair in R2 . 4
1.4 Recap: Karatsuba’s Algorithm 6
1.5 Strassen’s Algorithm . 7
1.6 Median & Selection . 7
1.7 Algorithm Design . 11

2 Greedy Algorithms 11
2.1 Interval Scheduling . 12
2.2 Interval Partitioning . 13
2.3 Interval Graphs . 15
2.4 Minimizing Lateness . 16
2.5 Lossless Compression . 16
2.6 Other Greedy Algorithms . 17

1

https://www.yuchenwyc.com

1 DIVIDE & CONQUER 2

1 Divide & Conquer

General framework

1. Break (a large chunk of) a problem into smaller subproblems of the
same type

2. Solve each subproblem recursively

3. At the end, quickly combine solutions from the subproblems and/or
solve any remaining part of the original problem

1.1 Master Theorem

Useful for analyzing divide-and-conquer running time

Theorem Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and
let T (n) be defined on the nonnegative integers by the recurrence.

T (n) = aT (
n

b
) + f(n)

where we interpret n
b to mean either ⌊nb ⌋ or ⌈

n
b ⌉. Then T (n) has the following

asymptotic bounds:

1. If f(n) = O(nlogb a−) for some constant > 0, then T (n) = Θ(nlogb a)

2. If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a lg n)

3. If f(n) = Ω(nlogb a+) for some constant > 0, and if af(bn) ≤ cf(n) for
some constant c < 1 and all sufficiently large n, then T (n) = Θ(f(n)).

Note There are recurrence relations which do not fall under any of these
cases (e.g. the recurrence relation T (n) ≤ T (n/5) + T (7n/10) +O(n) from
QuickSelect where the smaller instances are not of uniform size, or the re-
currence relation T (n) =

√
nT (

√
n) + n where a and b are not constants).

Theorem (from CSC236) Divide-and-conquer algorithms: partition prob-
lem into b roughly equal subproblems, solve, and recombine:

T (n)

k if n ≤ B

a1T (⌈n/b⌉) + a2T (⌊n/b⌋) + f(n) if n > B

1 DIVIDE & CONQUER 3

where b, k > 0, a1, a2 ≥ 0, and a = a1 + a2 > 0. f(n) is the cost of splitting
and recombining. If f from the previous slide has f ∈ Θ(nd), then

T (n) ∈

θ(nd) if a < bd

θ(nd log n) if a = bd

θ(nlogb a) if a > bd

1.2 Counting Inversions

Problem Given an array a of length n, count the number of pairs (i, j)
such that i < j but a[i] > a[j]

Applications

1. Voting theory

2. Collaborative filtering

3. Measuring the ”sortedness” of an array

4. Sensitivity analysis of Google’s ranking function

5. Rank aggregation for meta-searching on the Web

6. Nonparametric statistics (e.g., Kendall’s tau distance)

Brute Force Check all θ(n2) pairs

Divide & conquer

1. Divide: break away into two equal halves x and y

2. Conquer: count inversions in each half recursively

3. Combine:
Solve (remaining): count inversions with one entry in x and one in y
Merge: add all three counts

Count inversions (a, b) with a ∈ A and b ∈ B, assuming A and B are
sorted:

1. Scan A and B from left to right

2. Compare ai and bj

1 DIVIDE & CONQUER 4

3. If ai < bj , then ai is not inverted with any element left in B

4. If ai > bj , then bj is inverted with every element left in A

5. Append smaller element to sorted list C

How do we formally prove correctness? Induction on n is usually
very helpful, allows you to assume correctness of subproblems

Running time analysis

T (n) = 2T (
n

2
) +O(n)

Master theorem says this is T (n) = O(n log n)

1.3 Closest Pair in R2

Problem Given n points of the form (xi, yi) in the plane, find the closest
pair of points.

Applications

1. Basic primitive in graphics and computer vision

2. Geographic information systems, molecular modeling, air traffic con-
trol

3. Special case of nearest neighbor

1 DIVIDE & CONQUER 5

Brute force running time
Θ(n2)

Intuition from 1D? By sorting and checking, the problem would be eas-
ily O(n log n)

Non-degeneracy Assumption No two points have the same x or y co-
ordinate

Closest Pair in R2

1. Divide: points in equal halves by drawing a vertical line L

2. Conquer: solve each half recursively

3. Combine: find closest pair with one point on each side of L

4. Return the best of 3 solutions

Combine: We can restrict our attention to points within of L on each
side, where = best of the solutions in two halves

1. Only need to look at points within of L on each side

2. Sort points on the strip by y coordinate

3. Only need to check each point with next 11 points in sorted list

1 DIVIDE & CONQUER 6

Why 11? Claim: If two points are at least 12 positions apart in the sorted
list, their distance is at least .
proof:

1. No two points lie in the same δ/2× δ/2 box

2. Two points that are more than two rows apart are at distance at least
δ

1.4 Recap: Karatsuba’s Algorithm

Fast way to multiply two n digit integers x and y.

Brute force running time O(n2)

1 DIVIDE & CONQUER 7

Algorithm

1. Divide each integer into two parts

x = x1 ∗ 10
n
2 + x2, y = y1 ∗ 10

n
2 + y2

xy = (x1y1) ∗ 10n + (x1y2 + x2y1) ∗ 10
n
2 + (x2y2)

2. Four n
2 -digit can be replaced by three

x1y2 + x2y1 = (x1 + x2)(y1 + y2)− x1y1 − x2y2

Running time

T (n) = 3T (
n

2
) +O(n)

=⇒ T (n) = O(nlog2 3)

1.5 Strassen’s Algorithm

Generalizes Karatsuba’s insight to design a fast algorithm for multiplying
two n× n matrices

C11 C12

C21 C22

=

A11 A12

A21 A22

∗

B11 B12

B21 B22

Call n the “size” of the problem. Naively, this requires 8 multiplications of
size n

2 , but by Strassen’s insight, we can replace 8 multiplications by 7.
(Assume n is a power of 2 because we need to recursively partition the
matrix into 2-by-2 block matrices.)

Running time

T (n) = 7T (
n

2
) +O(n2)

T (n) =⇒ O(nlog2 7)

1.6 Median & Selection

Selection Given n comparable elements, find kth smallest.
minimum: k = 1
maximum: k = n
median: k = ⌊(n+ 1)/2⌋

1 DIVIDE & CONQUER 8

Different Implementations & their running time

1. O(n) compares for min or max

2. O(n log n) compares by sorting

3. O(n log k) compares with a binary heap

Applications

1. Order statistics

2. “top k”

3. bottleneck paths

Quick(Randomized) Select Selection is easier than sorting. Partially
sort array relative to a pivot element, and look for the kth smallest in sub-
array to the left or right of pivot. If partition only one element a time, then
the algorithm would not be efficient. Therefore we need techniques to find
a good pivot.

1 DIVIDE & CONQUER 9

Finding a good pivot Algorithm as the following:
1. Divide n elements into ⌊n5 ⌋ groups of 5 elements each (plus extra)
2. Find median of each group (except extra)

3. Find median of medians recursively.
4. Use median-of-medians as pivot element.

Analysis of median-of-medians selection algorithm - 5 element case

1. At least half of 5-element medians ≤ p

2. At least ⌊⌊n/5⌋/2⌋ = ⌊n/10⌋ medians ≤ p

3. At least 3⌊n/10⌋ elements ≤ p

1 DIVIDE & CONQUER 10

4. At least 3⌊n/10⌋ elements ≥ p

5. QUICK-SELECT() called recursively with at most n − 3⌊n/10⌋ ele-
ments

6. [not clear] C(n) = max number of compares on an array of n elements.

C(n) ≤ C(⌊n
5
⌋) + C(n− 3⌊ n

10
⌋) + 6

5
n+ n

6
5n: we need 6 comparisons to find the median among 5 elements
n: cost of QUICK-PARTITION()

Analysis of median-of-medians selection algorithm - general case
[not clear] Suppose we have m elements in each group.
Then we have approximately n

m groups and n
2m(1+m−1

2) number of elements
less than median-of-medians.
Then

T (n) = T (
n

m
) + T (n− n(m+ 1)

4m
)

Want
cn

m
+ cn >

cn(m+ 1)

4m

=⇒ m+ 1

4m
>

1

m
=⇒ m > 3

Choosing 4 involves floor and ceiling, so we choose 5 as the smallest number
for which this algorithm can work.

2 GREEDY ALGORITHMS 11

1.7 Algorithm Design

Best algorithm for a problem is

1. Typically hard to determine (We still don’t know best algorithms for
multiplying two n-digit integers or two n× n matrices)

2. Usually, we design an algorithm and then analyze its running time,
but some times we can do the reverse:
E.g., if you know you want an O(n2 log n) algorithm, Master theorem
suggests that you can get it by

T (n) = 4T (
n

2
) +O(n2)

So maybe you want to break your problem into 4 problems of size n
2

each, and then do O(n2) computation to combine.

Access to input For much of this analysis, we are assuming random
access to elements of input, so we are ignoring underlying data structures
(e.g. doubly linked list, binary tree, etc.)

Machine operations We’re only counting comparison or arithmetic op-
erations, so we are ignoring issues like how real numbers will be represented
in closest pair problem. When we get to P vs NP, representation will matter.

Size of the problem Can be any reasonable parameter of the problem.
For example, for matrix multiplication, we used n as the size, while an input
consists of two matrices with n2 entries. It doesn’t matter whether we call
n or n2 the size of the problem, because the actual running time of the
algorithm won’t change.

2 Greedy Algorithms

Outline We want to find a solution x that maximizes some objective func-
tion f , but the space of possible solutions x is too large. Since the solution
x is typically composed of several parts (e.g. x may be a set, composed of
its elements), instead of directly computing x,

1. Compute it one part at a time

2. Select the next part “greedily” to get maximum immediate benefit
(this needs to be defined carefully for each problem)

2 GREEDY ALGORITHMS 12

3. May not be optimal because there is no foresight

4. But sometimes this can be optimal too!

2.1 Interval Scheduling

Problem Job j starts at time sj and finishes at time fj . Two jobs are
compatible if they don’t overlap.
Goal: find maximum-size subset of mutually compatible jobs

Greedy template Consider jobs in some “natural” order. Take each job
if it’s compatible with the ones already chosen.

Order candidates

1. Earliest start time: ascending order of sj

2. Earliest finish time: ascending order of fj

3. Shortest interval: ascending order of fj − sj

4. Fewest conflicts: ascending order of cj , where cj is the number of
remaining jobs that conflict with j

5. Distance between jobs

Counterexamples For proving 1,2,4 do not work:

2 GREEDY ALGORITHMS 13

Implementing greedy with earliest finish time (EFT) Sort jobs by
finish time. Say f1 ≤ f2 ≤ · · · ≤ fn. When deciding whether job j should
be included, we need to check whether it is compatible with all previously
added jobs.
We only need to check if sj ≥ fi∗ , where i∗ is the last added job. This is
because for any job i added before i∗, fi ≤ fi∗ . So we can simply store and
maintain the finish time of the last added job.

Running time O(n log n)
(Sorting takes n log n)

Optimality of greedy with EFT Suppose for contradiction that greedy
is not optimal.
Say greedy selects jobs i1, i2, . . . , ik sorted by finish time.
Consider the optimal solution j1, j2, . . . , jm (also sorted by finish time) which
matches greedy for as long as possible. That is, we want j1 = i1, . . . , jr = ir
for greatest possible r.

Both ir+1 and jr+1 were compatible with the previous selection (i1 = j1, . . . , ir =
jr)
Consider the solution i1, i2, . . . , ir, ir+1, jr+2, . . . , jm. It should still be fea-
sible (since fir+1 ≤ fjr+1), therefore it is still optimal, and it matches with
greedy for one more step (contradiction!)

2.2 Interval Partitioning

Problem Job j starts at time sj and finishes at time fj . Two jobs are
compatible if they don’t overlap.
Goal: group jobs into fewest partitions such that jobs in the same partition
are compatible

2 GREEDY ALGORITHMS 14

One idea Find the maximum compatible set using the previous greedy
EFT algorithm, call it one partition, recurse on the remaining jobs.
=⇒ Doesn’t work!

Think of scheduling lectures for various courses into few classrooms as pos-
sible.

Greedy template Go through lectures in some “natural order”, assign
each lecture to a compatible classroom, and create a new classroom if the
lecture conflicts with every existing classroom

2 GREEDY ALGORITHMS 15

Order of lectures

1. Earliest start time: ascending order of sj

2. Earliest finish time: ascending order of fj

3. Shortest interval: ascending order of fj − sj

4. Fewest conflicts: ascending order of cj , where cj is the number of
remaining jobs that conflict with j

Figure 1: Counterexamples

2.3 Interval Graphs

Interval scheduling and interval partitioning can be seen as graph problems.

Input

1. Graph G = (V,E)

2 GREEDY ALGORITHMS 16

2. Vertices V = jobs or lectures

3. Edge (i, j) ∈ E if jobs i and j are incompatible

Problems

1. Interval scheduling = maximum independent set (MIS)

2. Interval partitioning = graph colouring

2.4 Minimizing Lateness

Problem We have a single machine. Each job j requires tj units of time
and is due by time dj . If it’s scheduled to start as sj , it will finish at
fj = sj + tj .
Lateness: lj = max{0, fj − dj}
Goal: minimize the maximum lateness, L = max

j
lj

Total lateness minimization is NP − complete

Contrast with interval scheduling

1. We can decide the start time

2. All jobs must be scheduled on a single machine

2.5 Lossless Compression

Problem We have a document that is written using n distinct labels.
Naive encoding: represent each label using k = log n bits
If the document has length m, this used m log n bits.
But what if some labels are much more frequent in the document than
others? We need to assign shorter codes to more frequent letters.
To avoid conflicts, we need prefix-free encoding:
Map each label x to a bit-string c(x) such that for all distinct labels x and
y, c(x) is not a prefix of c(y). So we can read left to right, find the first
point where it becomes a valid encoding, decode the label, and continue.

Formal Problem Given n symbols and their frequencies (w1, . . . , wn),
find a prefix-free encoding with lengths (l1, . . . , ln) assigned to the symbols
which minimizes

n
i=1wi · li

2 GREEDY ALGORITHMS 17

2.6 Other Greedy Algorithms

1. Dijkstra’s shortest path algorithm

2. Kruskal and Prim’s minimum spanning tree algorithms

