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Notes by Y.W. 1 VECTOR SPACES

1 Vector Spaces

1.1 Vector Spaces

Definition 1.1.1 A (real) vector space is a set V (whose elements are
called vectors) together with

1. an operation called vector addition, which for each pair of vectors
x,y ∈ V produced another vector in V denoted x+ y, and

2. an operation called multiplication by a scalar (a real number), which
for each vector x ∈ V , and each scalar c ∈ R produced another vector
in V denoted cx

Furthermore, the two operations must satisfy the following axioms: ∀x,y, z ∈
V, ∀c, d ∈ R,

1. (x+ y) + z = x+ (y+ z)

2. x+ y = y+ x

3. ∃0 ∈ V s.t. x+ 0 = x (additive identity)

4. ∃ − x ∈ V s.t. x+−x = 0 (additive inverse)

5. c(x+ y) = cx+ cy

6. (c+ d)x = cx+ dx

7. (cd)x = c(dx)

8. 1x = x

Proposition 1.1.6 Let V be a vector space. Then

1. The zero vector 0 is unique.

2. For all x ∈ V, 0x = 0.

3. For each x ∈ V , the additive inverse −x is unique.

4. For all x ∈ V , and all c ∈ R, (−c)x = −(cx).

Smooth functions C∞

Most functions are not smooth.
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Notes by Y.W. 1 VECTOR SPACES

1.2 Subspaces

Example C∞(R) < Ck(R) < Differentiable functions < C(R) < F (R)

Definition Let V be a vector space and Let W ⊆ V be a subset. Then W
is a (vector) subspace of V if W is a vector space itself under the operations
of vector sum and scalar multiplication from V.

Theorem 1.2.8 Let V be a vector space and Let W ⊆ V be a nonempty
subset of V. Then W is a subspace of V iff ∀x,y ∈ W , and all c ∈ R, we
have cx+ y ∈ W .
proof: →: If W is a subspace of V, then ∀x,y ∈ W and c ∈ R, cx+ y ∈ W
holds since W itself is a real vector space.
←: If ∀x,y ∈ W , and all c ∈ R, we have cx+ y ∈ W
Can have c = 1, so x+ y ∈ W (close under addition)
c = −1 and y = x, so −x+ x = 0 ∈ W (additive identity)
y = 0, so cx ∈ W (close under scalar multiplication)
These implies all the axioms. 

Examples

1. W = {f ∈ C(R)|f(π) = 0}. W subspace of C(R)? -Yes

2. W = {f ∈ C(R)|f(e) = e}. W subspace of C(R)? -No, not close
under addition

3. W = {(x1, ..., xn)|xi ≥ 0∀i}. W subspace of C(R)? -No, there is no
additive inverse for each item in W.

Theorem 1.2.13 Let V be a vector space. Then the intersection of any
collection of subspaces of V is a subspace of V.
proof: Consider any collection of subspace of V. Note that the intersection
of the subspaces is not empty since at least the zero vector from V is in
it. Now let x,y be any two vectors in the intersection, so they are in every
single subspace in the collection. Therefore cx + y is also in every single
subspace in the collection, so that it is in the intersection as well. Hence the
intersection is a subspace of V. 

Application The set of all solutions of any simultaneous system of equa-
tions is a subspace of Rn.
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Notes by Y.W. 1 VECTOR SPACES

Corollary 1.2.14 Let aij(1 ≤ i ≤ m, 1 ≤ j ≤ n) be any real numbers
and let W = {(x1, ..., xn) ∈ Rn|ai1x1 + . . .+ ainxn = 0 for all i, 1 ≤ i ≤ m}.
Then W is a subspace of Rn.

1.3 Linear Combinations

Definition 1.3.1 Let S be a subset of a vector space V.

1. A linear combination of vectors in S is any sum a1x1 + . . . + anxn

where the ai ∈ R, and the xi ∈ S

2. If S ∕= ∅, the set of all linear combinations of vectors in S is called the
span of S, and denoted Span(S). If S = ∅, we define Span(S) = {0}.
(Remark: It is a mathematician convention)

3. If W = Span(S), we say S spans (or generates) W.

Theorem 1.3.4 Let V be a vector space and let S be any subset of V.
Then Span(S) is a subspace of V.

proof: Span(S) is non-empty by definition. Let x,y ∈ Span(S), then they
are linear combinations of vectors in S. Check that cx + y is also a linear
combination of vectors in S, so cx + y ∈ Span(S). Hence Span(S) is a
subspace of V. 

Definition Let W1 and W2 be subspaces of a vector space V. The sum of
W1 and W2 is the set

W1 +W2 = {x ∈ V |x = x1 + x2, for some x1 ∈ W1 and x2 ∈ W2}

Proposition 1.3.8 The basis of sum is the union of two bases Let
W1 = Span(S1) and W2 = Span(S2) be subspaces of a vector space V. Then
W1 +W2 = Span(S1 ∪ S2)

Theorem 1.3.9 Let W1 and W2 be subspaces of a vector space V. Then
W1 +W2 is also a subspace of V.

Proposition 1.3.11 W1+W2 is the smallest subspace containingW1∪W2:
Let W1 and W2 be subspaces of a vector space V and let W be a subspace
of V such that W1 ∪W2 ⊆ W . Then W1 +W2 ⊆ W

5
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Remark W1 ∪W2 is a subspace of V iff one is contained in another.

1.4 Linear Dependence and Linear Independence

Definitions 1.4.2 Let V be a vector space, and let S be a subset of V.

1. A linear dependence among the vectors of S is an equation

a1x1 + . . .+ anxn = 0

where the xi ∈ S, and the ai ∈ R are not all zero (i.e., at least one of
the ai ∕= 0

2. the set S is said to be linearly dependent if there exists a linear depen-
dence among the vectors in S.

Fact Let S be a set. If 0 ∈ S, then S is dependent.

Definition 1.4.4 A subset S of a vector space V is linearly independent if
whenever we have ai ∈ R and xi ∈ S such that a1x1 + . . .+ anxn = 0, then
ai = 0 for all i.

Example In any vector space the empty subset ∅ is linearly independent.

Proposition 1.4.7

1. Let S be a linearly independent subset of a vector space V, and let
S’ be another subset of V that contains S. Then S’ is also linearly
dependent.

2. Let S be linearly independent subset of a vector space V and let S’
be another subset of V that is contained in S. Then S’ is also linearly
independent.

1.5 Interlude on Solving Systems of Linear Equations (MAT223)

1.6 Bases And Dimension (Jan 17)

Definition A subset S of vector space V is called a basis of V if V =
Span(S) and S is linearly independent.

Remark A basis is the maximal set of linearly independent vectors / min-
imal set of spanning vectors.
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Examples

1. the standard basis S = {e1,...,en} in Rn, since every vector (a1, ..., an) ∈
Rn may be written as the linear combination (a1, ..., an) = a1e1+ ...+
anen

2. The vector space Rn has many other bases as well. e.g., in R2, consider
the set S = {(1, 2), (1,−1)}, which is l.i.

3. Let V = Pn(R) and consider S = {1, x, x2, ..., xn}, which is a basis of
V.
proof: It is clear that S spans V. For independence, consider

a0 + a1x+ a2x
2 + ...+ an−1x

n−1 + anx
n = 0

Take the derivative of both sides,

dn

dxn
(a0 + a1x+ a2x

2 + ...+ an−1x
n−1 + anx

n) =
dn

dxn
(0)

n!an = 0 =⇒ an = 0

Similarly, we have ai = 0 for all i, as wanted.

4. The empty subset, ∅, is a basis of the vector space consisting only of
a zero vector, {0}.

Theorem 1.6.3 Let V be a vector space, and let S be a nonempty subset
of V. Then S is a basis of V iff every vector x ∈ V may be written uniquely
as a linear combination of the vectors in S.
Proof: →: Assume S is a basis of V, then given x ∈ V , there are scalars
ai ∈ R and vectors xi ∈ S s.t. x = a1x1 + ... + anxn. To show this
linear combination is unique, consider a possible second linear combination
of vectors in S which also adds up to x: x = b1x1 + ...+ bnxn. Subtracting
these two expressions for x, we find that

0 = a1x1 + ...+ anxn − (b1x1 + ...+ bnxn)

= (a1 − b1)x1 + ...+ (an − bn)xn

Since S is linearly independent, the equation implies that ai = bi for all i.
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Notes by Y.W. 1 VECTOR SPACES

←: Assume every vector x ∈ V may be written uniquely as a linear combi-
nation of the vectors in S. This implies Span(S) = V . We must show that
S is l.i. Consider an equation

a1x1 + ...+ anxn = 0

Note that it is also the case that

0x = 0(x1 + ...+ xn) = 0

Since we assumed that every x has a unique representation in S, then it
must be true that ai = 0 for all i. Hence S is l.i.

Theorem 1.6.6 Let V be a vector space that has a finite spanning set,
and let S be a linearly independent subset of V. Then there exists a basis S’
of V, with S ⊂ S′

Lemma 1.6.8 Let S be a linearly independent subset of V and let x ∈ V ,
but x /∈ S. Then S ∪ {x} is l.i. iff x /∈ Span(S).

Insight the number of vectors in a basis is, in a rough sense, a measure of
“how big” the space is.

Theorem 1.6.10 (Basis Theorem) Let V be a vector space and let S be
a spanning set for V, which has m elements. Then no linearly independent
set in V can have more than m elements.

proof: It suffices to show that every set in V with more than m elements
is linearly dependent. Write S = y1, ..., ym and suppose S′ = x1, ..., xn is a
subset of V with n > m vectors. Consider an equation

(1)a1x1 + ...+ anxn = 0

Our goal is to show that ai not all 0. Since S spans V, there are scalars bij
s.t. for each i,

xi = bi1y1 + ...+ bimym

Substituting these equations into (1), we get

a1(b11y1 + ...+ b1mym) + ...+ an(bn1y1 + ...+ bnmym) = 0

8
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Collecting terms and rearranging,

(a1b11 + ...+ anbn1)y1 + ...+ (a1b1m + ...+ anbnm)ym = 0

Since S is l.i., this is equivalent to solving the system

b11a1 + ...+ bn1an = 0

.

.

.

b1ma1 + ...+ bnman = 0

But this is a system with n unknowns and m equations and n > m, so there
must exist a non-trivial solution {a1, ..., an}, which is what we wanted to
show. 

Corollary 1.6.11 Let V be a vector space and let S and S′ be two bases
of V , with m and m′ elements, respectively. Then m = m′.

proof:
Since S is a spanning set of V and S’ is l.i., we have m′ ≤ m. Since S’ is a
spanning set of V and S is l.i.m we have m ≤ m′. Hence m = m′. 

Definitions 1.6.12

1. If V is a vector space with some finite basis(possibly empty), we say
V is finite-dimentional.

2. Let V be a finite-dimensional vector space. The dimension of V, de-
noted dim(V), is the number of vectors in a (hence any) basis of V.

3. If V = {0}, we define dim(V) = 0.

Examples

1. For each n, dim(Rn) = n, since the standard basis contains n vectors.

2. dim(Pn(R)) = n+1, since a basis for Pn(R) contains n + 1 functions.

3. The vector spaces P (R), C1(R) and C(R) are not finite-dimensional.
We say that such spaces are infinite-dimentional.

4. dim(Span{(1, 2, 3), (4, 5, 6), (7, 8, 9)}) = 2

9
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Corollary 1.6.14 Let W be a subspace of a finite-dimensional vector space
V. Then dim(W ) ≤ dim(V ). Furthermore, dim(W ) = dim(V ) iff W = V .

Corollary 1.6.15 Let W be a subspace of Rn defined by a system of
homogeneous linear equations. Then dim(W) is equal to the number of free
variables in the corresponding echelon form system.

Theorem 1.6.18 Let W1 and W2 be finite-dimensional subspaces of a
vector space V. Then

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2)

Remark Analogous to the Principle of Inclusion-Exclusion

proof: Result obvious if either W1 or W2 is {0}.
Therefore, we assume that neither W1 nor W2 is {0}. Starting from a basis
S of W1 ∩ W2. We can always find sets T1 and T2 (disjoint from S) such
that S ∪ T1 is a basis for W1 and S ∪ T2 is a basis for W2. We claim that
U = S ∪ T1 ∪ T2 is a basis for W1 +W2, since

U = S ∪ T1 ∪ T2 = (S ∪ T1) ∪ (S ∪ T2)

Span(U) = Span((S ∪ T1) ∪ (S ∪ T2)) = W1 +W2

Next, prove that U is linearly independent. Any potential linear dependence
among the vectors in U must have the form

v+w1 +w2 = 0

where v ∈ Span(S) = W1 ∩ W2,w1 ∈ Span(T1) ⊂ W1,w2 ∈ Span(T2) ⊂
W2. (slice the linear combination into the sum of the vectors from 3 vector
spaces). It suffices to prove that in any such potential linear dependence,
we must have v = w1 = w2 = 0 (each vector is a lin comb, and equals 0).
Consider w2 = −v − w1. Since −v − w1 ∈ W1,w2 ∈ W2, we must have
w2 ∈ W1 ∩ W2. By definition, w2 ∈ Span(T2) But S ∩ T2 = ∅, hence
Span(S) ∩ Span(T2) = {0}. Therefore we must have w2 = 0. So then
−v = w1 ∈ W1 ∩W2. Since S ∩ T1 = ∅, Span(S) ∩ Span(T1) = {0} and we
have w1 = 0, so v = 0 as well. So U is independent.

10



Notes by Y.W. 1 VECTOR SPACES

|U | = |S|+ |T1|+ |T2|
= dimW1 ∩W2 + (dimW1 − dimW1 ∩W2) + (dimW2 − dimW1 ∩W2)

= dim(W1) + dim(W2)− dim(W1 ∩W2)

Exercises for 1.4 1.(k), 7

Exercises for 1.6 1.(d)(e)(f), 3, 4, 16
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Notes by Y.W. 2 LINEAR TRANSFORMATIONS

2 Linear Transformations

2.1 Linear Tranformations

A function T from V to W is denoted by T : V → W . The vector w = T (v)
in W is called the image of v under the function T. Loosely speaking, we
want our functions to turn the algebraic operations of addition and scalar
multiplication in V into addition and scalar multiplication in W.

Definition 2.1.1 A function T : V → W is called a linear mapping or a
linear transformation if it satisfies

1. T (u+ v) = T (u) + T (v) for all u and v ∈ V

2. T (av) = aT (v) for all a ∈ R and v ∈ V

V is called the domain of T and W is called the target of T.
We say that a linear transformation preserves the operations of addition and
scalar multiplication.

Property A linear mapping always takes the zero vector in the domain
vector space to the zero vector in the target vector space.

Proposition 2.1.2 A function T : V → W is a linear transformation if
and only if for all a and b ∈ R and all u and v ∈ V

T (au+ bv) = aT (u) + bT (v)

Corollary 2.1.3 A function T : V → W is a linear transformation if and
only if for all a1, .., ak ∈ R and for all v1, ...,vk ∈ V :

T (

k

i=1

aivi) =

k

i=1

aiT (vi)

Remark prove this by induction!

Examples

1. Let V be any vector space, and let W = V. The identity transformation
I : V → V is defined by I(v) = v for all v ∈ V.

12



Notes by Y.W. 2 LINEAR TRANSFORMATIONS

2. Let V and W be any vector spaces, and let T : V → W be the mapping
that takes every vector in V to the zero vector in W:

T (v) = 0W

for all v ∈ V. T is called zero transformation.

3. T (x) = a1x1 + ...+ anxn

4. Differentiation, definite integration

Remark The inner product plays a crucial role in linear algebra in that it
provides a bridge between algebra and geometry, which is the heart of the
more advanced material that appears later in the text.

Proposition 2.1.14 If T : V → W is a linear transformation and V is
finite-dimensional, then T is uniquely determined by its values on the mem-
bers of a basis of V.
proof: Show that if S and T are linear transformations that take the same
values on each member of a basis for V, then in fact S = T.

T (v) = T (a1v1 + ...+ akvk)

= a1T (v1) + ...+ akT (vk)

= a1S(v1) + ...+ akS(vk)

= S(a1v1 + ...+ akvk)

= S(v)

Therefore, S and T are equal as mappings from V to W. 

2.2 Linear Transformations Between Finite-Dimensional Vec-
tor Spaces

Proposition 2.2.1 Let T : V → W be a linear transformation between
the finite-dimensional vector spaces V and W. If {v1, ...,vk} is a basis for V
and {w1, ...,wl} is a basis for W, then T : V → W is uniquely determined
by the l · k scalars used to express T (vj), j = 1, ..., k, in terms of w1, ...,wl.

13



Notes by Y.W. 2 LINEAR TRANSFORMATIONS

Definition 2.2.6 Let T : V → W be a linear transformation between
the finite-dimensional vector spaces V and W, and let α = {v1, ...,vk} and
β = {w1, ...,wl}, respectively, be any bases for V and W. Let aij , 1 ≤ i ≤ l
and 1 ≤ j ≤ k be the l · k scalars that determine T with respect to the
bases α and β. The matrix whose entries are the scalars aij , 1 ≤ i ≤ l and
1 ≤ j ≤ k, is called the matrix of the linear transformation T with respect
to the bases α for V and β for W. This matrix is denoted by [T ]βα.

Remark The basis vectors in the domain and target spaces are written in
some particular order.

Definition of coordinate vectors If v = a1v1 + ... + akvk and w =
b1w1 + ...+ blwl, we can express v and w in coordinates, respectively, as a
k×1 matrix and as an l×1 matrix, with respect to the chosen bases. These
coordinate vectors will be denoted by [v]α and [w]β , respectively. Thus

[v]α =




a1
...
ak



 and [w]β =




b1
...
bl





Proposition 2.2.15 Let T : V → W be a linear transformation between
vector spaces V of dimension k and W of dimension l. Let α = {v1, ...,vk}
be a basis for V and β = {w1, ...,wl} be a basis for W. Then for each v ∈ V ,

[T (v)]β = [T ]βα[v]α

proof: Let v = x1v1 + ...+ xkvk ∈ V . Then if T (vj) = a1jw1 + ...+ aljwl

T (v) =

k

j=1

xjT (vj)

=

k

j=1

xj(

l

i=1

aijwi)

=

l

i=1

(

k

j=1

xjaij)wi

Thus, the ith coefficient of T(v) in terms of β is
k

j=1 xjaij and [T (v)]β =




k
j=1 xja1j

...k
j=1 xjalj



 which is precisely [T (v)]β = [T ]βα[v]α. 

14
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Proposition 2.2.19 Let α = {v1, ...,vk} be a basis for V and β =
{w1, ...,wl} be a basis for W, and let v = x1v1 + ...+ xkvk ∈ V

1. If A is an l × k matrix, then the function

T (v) = w

where [w]β = A[v]α is a linear transformation.

2. If A = [S]βα is the matrix of a transformation S : V → W , then the

transformation T constructed from [S]βα is equal to S.

3. If T is the transformation of (1) constructed from A, then [T ]βα = A

Proposition 2.2.20 Let V and W be finite-dimensional vector spaces.
Let α be a basis for V and β a basis for W. Then the assignment of a matrix
to a linear transformation from V to W given by T goes to [T ]βα is injective
and surjective.

Notes

1. When proving a function T is not a linear transformation, can consider
T (0) ∕= 0.

2.3 Kernel and Image

Definition 2.3.1 The kernel of T, denoted Ker(T ), is the subset of V
consisting of all vectors v ∈ V such that T (v) = 0.

Remark Kernel is different from null spaces. A null space is about a
matrix, and it is something in Rn.

Proposition 2.3.2 Let T : V → W be a linear transformation. Ker(T) is
a subspace of V.

Examples

1. Let V = P3(R). Define T : V → V by T (p(x)) = d
dxp(x). Ker(T) only

consists constant polynomials.

2. Let V = W = R2. Let T be a rotation Rθ. Then Ker(T ) = {0}.

15
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Proposition 2.3.7 Let T : V → W be a linear transformation of finite-
dimensional vector spaces, and let α and β be bases for V and W, respec-
tively. Then x ∈ Ker(T ) ife lf the coordinate vector of x, [x]α, satisfies the
system of equations

a11x1 + ...+ a1kxk = 0

...

al1x1 + ...+ alkxk = 0

where the coefficients aij are the entries of the matrix [T ]βα .

Remark This says

x ∈ ker(T ) ⇐⇒ [x]α ∈ Nul[T ]βα

Proposition 2.3.8 Independence is Basis-Independent Let V be a
finite-dimensional vector space, and let α = {v1, ...,vk} be a basis for V.
Then the vectors x1, ...,xm ∈ V are linearly independent iff their corre-
sponding coordinate vectors [x1]α, ..., [xm]α are linearly independent.

Definition 2.3.10 The subset of W consisting of all vectors w ∈ W for
which there exists a v ∈ V such that T (v) = w is called the image of T and
is denoted by Im(T ).

Proposition 2.3.11 Let T : V → W be a linear transformation. The
image of T is a subspace of W.

Proposition 2.3.12 If {v1, ...,vm}is any set that spans V (in particular,
it could be a basis of V), then {T (v1), ..., T (vm)} spans Im(T ).

Corollary 2.3.13 If α = {v1, ...,vk} is a basis for V and β = {w1, ...,wl}
is a basis for W, then the vectors in W, whose coordinate vectors (in terms

of β) are the columns of [T ]βα, span Im(T ).

Rank-Nullity Theorem 2.3.17 If V is finite-dimensional vector space
and T : V → W is a linear transformation, then

dim(Ker(T )) + dim(Im(T )) = dim(V )

Equivalently,
Nullity(T ) +Rank(T ) = dim(V )

16
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2.4 Applications of the Dimension Theorem

Proposition 2.4.2 A linear transformation T : V → W is injective iff
dim(Ker(T )) = 0, or dim(Im(T )) = dim(V ).

Remark Analogously, in MAT223 we said that a matrix is one-to-one if
all the columns are l.i..

Corollary 2.4.3 A linear mapping T : V → W on a finite-dimensional
vector space V is injective iff dim(Im(T )) = dim(V ).

Corollary 2.4.4 If dim(W ) < dim(V ) and T : V → W is a linear map-
ping, then T is not injective.
proof:

dim(Im(T )) ≤ dim(W ) < dim(V )

=⇒ dim(Ker(T )) > 0

Proposition 2.4.7 If W is finite-dimensional, then a linear mapping T :
V → W is surjective iff dim(Im(T )) = dim(W )

Remark Analogously, in MAT223 we said that a matrix A ∈ Mm×n(R) is
onto if there is a pivot in every row, or the columns of A spans Rm.

Corollary 2.4.8 If V andW are finite-dimensional, with dim(V ) < dim(W ),
then there is no surjective linear mapping T : V → W
proof: dim(Im(T )) ≤ dim(V ) < dim(W ) =⇒ T is not surjective

Corollary 2.4.9 A linear mapping T : V → W can be surjective iff

dim(V ) ≥ dim(W )

Proposition 2.4.10 Let dim(V ) = dim(W ). A linear transformation
T : V → W is injective iff it is surjective.

Proposition 2.4.11 Let T : V → W be a linear transformation, and let
w ∈ Im(T ). Let v1 be any fixed vector with T (v1) = w. Then every vector
v2 ∈ T−1({w}) can be written uniquely as v2 = v1 + u, where u ∈ Ker(T )
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Remark In this situation T−1({w}) is a subspace of V iff w = 0.

Corollary 2.4.15 Let T : V → W be a linear transformation of finite-
dimensional vector spaces, and let w ∈ W . Then there is a unique vector
v ∈ V such that T (v) = w iff

1. w ∈ Im(T ), and

2. dim(Ker(T)) = 0

Proposition 2.4.16 With notation as before

1. The set of solutions of the system of linear equations Ax = b is the
subset T−1({b}) of V = Rn

2. The set of solutions of the system of linear equations Ax = b is a
subspace of V iff the system is homogeneous, in which case the set of
solutions is Ker(T ).

Corollary 2.4.17

1. The number of free variables in the homogeneous system Ax = 0 (or
its echelon form equivalent) is equal to dim(Ker(T ))

2. The number of basic variables of the system is equal to dim(Im(T ))

Definition 2.4.18 Given an inhomogeneous system of equations, Ax = b,
any single vector x satisfying the system (necessarily x ∕= 0) is called a
particular solution of the system of equations.

Proposition 2.4.19 Let xp be a particular solution of the system Ax = b.
Then every other solution to Ax = b is of the form x = xp+xh, where xh is
a solution of the corresponding homogeneous system of equations Ax = 0.
Furthermore, given x and xp, there is a unique xh such that x = xp + xh.

Corollary 2.4.20 The system Ax = b has a unique solution iff b ∈ Im(T )
and the only solution to Ax = 0 is the zero vector.

18



Notes by Y.W. 2 LINEAR TRANSFORMATIONS

2.5 Composition of Linear Transformations

Definition Let U, V, and W be vector spaces, and let S : U → V and
T : V → W be linear transformations. The composition of S and T is
denoted TS : U → W and is defined by

TS(v) = T (S(v))

Notice that this is well defined since the image of S is contained in V, which
is the domain of T.

Proposition 2.5.1 Let S : U → V and T : V → W be linear transforma-
tions, then TS is a linear transformation.

Remark In general, ST is not equal to TS. We emphasize that the compo-
sition is well defined only if the image of the first transformation is contained
in the domain of the second.

Proposition 2.5.4

1. Let R : U → V, S : V → W and T : W → X be linear transformations
of the vector space U,V,W and X as indicated. Then

T (SR) = (TS)R (associativity)

2. Let R : U → V, S : V → W and T : W → X be linear transformations
of the vector space U,V,W and X as indicated. Then

T (R+ S) = TR+ TS (distributivity)

3. Let R : U → V, S : V → W and T : W → X be linear transformations
of the vector space U,V,W and X as indicated. Then

(T + S)R = TR+ SR (distributivity)

Proposition 2.5.6 Let S : U → V and T : V → W be linear transforma-
tions. Then

1. Ker(S) ⊂ Ker(TS)

2. Im(TS) ⊂ Im(T )
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proof:

1. If u ∈ Ker(S), S(u) = 0. Then TS(u) = T (0) = 0. Therefore
u ∈ Ker(TS).

2. If x ∈ Im(TS), then ∃u ∈ U s.t. TS(u) = T (S(u)) = x, then
∃v = S(u) ∈ V s.t. T (v) = x. Therefore x ∈ Im(T ) 

Corollary 2.5.7 Let S : U → V and T : V → W be linear transformations
of finite-dimensional vector spaces. Then

1. dim(Ker(S)) ≤ dim(Ker(TS))

2. dim(Im(TS)) ≤ dim(Im(T ))

Proposition 2.5.9 If [S]βα has entries aij , i = 1, . . . , n and j = 1, . . . ,m
and [T ]γβ has entries bkl, k = 1, . . . , p and l = 1, . . . , n, then the entries of

[TS]γα are
n

l=1 bklalj

Definition 2.5.10 Let A be an n×m matrix and B a p× n matrix, then
the matrix product BA is defined to be the p×m matrix whose entries aren

l=1 bklalj for k = 1, . . . , p and j = 1, . . . ,m.

Proposition 2.5.13 Let S : U → V and T : V → W be linear transfor-
mations between finite-dimensional vector spaces. Let α,β and γ be bases
for U,V and W, respectively. Then

[TS]γα = [T ]γβ [S]
β
α

In words, the matrix of the composition of two linear transformations is the
product of the matrices of the transformations

Proposition 2.5.14

1. Let A,B and C be m× n, n× p and p× r matrices, then

(AB)C = A(BC) (associativity)

2. Let A,B and C be m× n, n× p and p× r matrices, then

A(B + C) = AB +AC (distributivity)

3. Let A,B and C be m× n, n× p and p× r matrices, then

(A+B)C = AC +BC (distributivity)
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2.6 The Inverse of a Linear Transformation

Definition If f : S1 → S2 is a function from one set to another, we say
that g is the inverse function of f if for every x ∈ S1, g(f(x)) = x and for
every y ∈ S2, f(g(y)) = y. If such a g exists, f must be both injective and
surjective(bijective).
To see this, notice that if f(x1) = f(x2), then

x1 = g(f(x1)) = g(f(x2)) = x2

So that f is injective. If y ∈ S2, then for x = g(y), f(x) = f(g(y)) = y so
that f is surjective.
Converse is true: bijective =⇒ exists an inverse

Proposition 2.6.1 If T : V → W is injective and surjective, then the
inverse function S : W → V is a linear transformation.

proof: Let w1 and w2 ∈ W and a and b ∈ R. By definition, S(w1) = v1

and S(w2) = v2 are the unique vectors v1 and v2 satisfying T (v1) = w1

and T (v2) = w2. By definition, S(aw1 + bw2) is the unique vector v with
T (v) = aw1 + bw2 but v = av1 + bv2 satisfies T (av1 + bv2) = aT (v1) +
bT (v2) = aw1+bw2. Thus, S(aw1 + bw2) = av1 + bv2 = aS(w1) + bS(w2)
as we desired. 

Proposition 2.6.2 A linear transformation T : V → W has an inverse
linear transformation S if and only if T is injective and surjective.

Definition 2.6.3 If T : V → W is a linear transformation that has an
inverse transformation S : W → V , we say that T is invertible, and we
denote the inverse of T by T−1.

Definition 2.6.4 If T : V → W is an invertible transformation, T is called
an isomorphism, and we say V and W are isomorphic vector spaces.

Notes T−1T (v) is the identity linear transformation of V, T−1T = IV ,
and TT−1 is the identity linear transformation of W, TT−1 = IW . If S is a
linear transformation that is a candidate for the inverse, we need only verify
that ST = IV and TS = IW .

Proposition 2.6.7 If V and W are finite-dimensional vector spaces, then
there is an isomorphism T : V → W if and only if dim(V ) = dim(W ).
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Definition 2.6.10 An n × n matrix A is called invertible if there exists
an n× n matrix B so that AB = BA = I. B is called the inverse of A and
is denoted by A−1.

Proposition 2.6.11 Let T : V → W be an isomorphism of finite-dimensional
vector spaces. Then for any choice of bases α for V and β for W

[T−1]αβ = [T ]βα
−1

2.7 Change of Basis

Proposition 2.7.3 Let V be a finite-dimensional vector space, and let α
and α′ be bases for V. Let v ∈ V . Then the coordinate vector [v]α′ of v in
the basis α′ is related to the coordinate vector [v]α of v in the basis α by

[I]α
′

α [v]α = [v]α′

Theorem 2.7.5 Let T : V → W be a linear transformation between finite-
dimensional vector spaces V and W. Let IV : V → V and IW : W → W be
the respective identity transformations of V and W. Let α and α′ be two
bases for V, and let β and β′ be two bases for W . Then

[T ]β
′

α′ = [IW ]β
′

β · [T ]βα · [IV ]αα′

Definition 2.7.6 Let A,B be n × n matrices. A and B are said to be
similar if there is an invertible n× n matrix Q such that

B = Q−1AQ

3 The Determinant Function

3.1 The Determinant as Area

Corollary 3.1.2 Let V = R2. T : V → V is an isomorphism if and only
if the area of the parallelogram constructed previously is nonzero.

Proposition 3.1.3 The function Area(a1,a2) has the following properties
for a1,a2, ,a

′
1, and a′2 ∈ R2

1. Area(ba1 + ca′1,a2) = bArea(a1,a2) + cArea(a′1,a2) for b, c ∈ R
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2. Area(a1, ba2 + ca′2) = bArea(a1,a2) + cArea(a1,a
′
2) for b, c ∈ R

3. Area(a1,a2) = −Area(a2,a1)

4. Area((1, 0), (0, 1)) = 1

Proposition 3.1.4 If B(a1,a2) is any real-valued function of a1 and a2 ∈
R2 that satisfies Properties (i),(ii),(iii) of Proposition (3.1.3), then B is equal
to the area function.

Definition 3.1.5 The determinant of a 2×2 matrix A, denoted by det(A)
or det(a1,a2), is the unique function of the rows of A satisfying

1. det(a1, ba2 + ca′2) = b det(a1,a2) + c det(a1,a
′
2) for b, c ∈ R

2. det(a1,a2) = − det(a2,a1)

3. det(e1, e2) = 1

As a consequence of (3.1.4), det(A) is given explicitly by

det(A) = a11a22 − a12a21

We can rephrase the work of this section as follows

Proposition 3.1.6

1. A 2× 2 matrix A is invertible if and only if det(A) ∕= 0

2. If T : V → V is a linear transformation of a two-dimensional vector
space V, then T is an isomorphism if and only if det([T ]αα) ∕= 0

3.2 The Determinant of an n× n Matrix

Definition 3.2.1 A function f of the rows of a matrix A is called multilinear
if f is a linear function of each of its rows when the remaining rows are held
fixed. That is, f is multilinear if for all b and b′ ∈ R,

f(a1, . . . , bal + b′a′l, . . . ,an) = bf(a1, . . . ,al, . . . ,an) + b′f(a1, . . . ,a
′
l, . . . ,an)

Definition 3.2.2 A function f of the rows of a matrix A is said to be
alternating if whenever any two rows of A are interchanged f changes sign.
That is, for alli ∕= j, 1 ≤ i, j ≤ n, we have

f(a1, . . . ,al, . . . ,aj , . . . ,an) = −f(a1, . . . ,aj , . . . ,ai, . . . ,an)
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Lemma 3.2.3 If f is an alternating real-valued function of the rows of an
n× n matrix and two rows of the matrix A are identical, then f(A) = 0

Definition 3.2.4 Let A be an n×n matrix with entries aij , i, j = 1, . . . , n.
The ijth minor of A is defined to be the (n− 1)× (n− 1) matrix obtained
by deleting the ith row and jth column of A. The ijth minor is denoted by
Aij .

Proposition 3.2.5 Let A be a 3 × 3 matrix, and let f be an alternating
multilinear function. Then

f(A) = [a11 det(A11)− a12 det(A12) + a13 det(A13)]f(I)

Corollary 3.2.6 There exists exactly one multilinear alternating function
f of the rows of a 3× 3 matrix such that f(I) = 1

Definition 3.2.7 The determinant function of a 3×3 matrix is the unique
alternating multilinear function f with f(I) = 1. This function will be
denoted by det(A).

Theorem 3.2.8 There exists exactly one alternating multilinear function
f : Mn×n(R) → R satisfying f(I) = 1, which is called the determinant
function f(A) = det(A). Further, any alternating multilinear function f
satisfies f(A) = det(A)f(I)

Proposition 3.2.10 If an n×nmatrix A is not invertible, then det(A) = 0.

Proposition 3.2.11

det(a1, . . . ,an) = det(a1, . . . ,ai + baj , . . . ,an)

Lemma 3.2.12 If A is an n×n diagonal matrix, then det(A) = a11a22 . . . ann

Proposition 3.2.13 If A is invertible, then det(A) ∕= 0

Theorem 3.2.14 Let A be an n× n matrix. A is invertible if and only if
det(A) ∕= 0
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3.3 Further Properties of the Determinant

Let A′ be the matrix whose entries a′ij are the scalars (−1)i+j det(Aji). The
quantity a′ij is called the jith cofactor of A.

Proposition 3.3.1
AA′ = det(A)I

Corollary 3.3.2 If A is an invertible n×n matrix, then A−1 is the matrix
whose ijth entry is (−1)i+j det(Aji)/ det(A)

Proposition 3.3.4 For any fixed j, 1 ≤ j ≤ n,

det(A) =

n

i=1

(−1)i+jaij det(Aij)

Remark 3.3.5 In general, if b is a vector in Rn, A′b is a vector whose
ith entry is

n
j=1 a

′
ijbj =

n
j=1 bj(−1)i+j det(Aji). This is the determinant

of the matrix whose columns are a1, . . . ,ai−1,b,ai+1, . . . ,an, where aj , 1 ≤
j ≤ n, is the jth column of A. The determinant is expanded along the ith
column. This fact will be used in the discussion of Cramer’s rule, which
appears later in this section.

Proposition 3.3.7 If A and B are n× n matrices, then

1. det(AB) = det(A) det(B)

2. If A is invertible, then det(A−1) = 1/ det(A)

Corollary 3.3.8 If T : V → V is a linear transformation, dim(V ) = n,
then

det([T ]αα) = det([T ]ββ)

for all choices of bases α and β for V.

Definition 3.3.9 The determinant of a linear transformation T : V → V
of a finite-dimensional vector space is the determinant of [T ]αα for any choice
of α. We denote this by det(T ).

Proposition 3.3.11 A linear transformation T : V → V of a finite-
dimensional vector space is an isomorphism if and only if det(T ) ∕= 0
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Proposition 3.3.12 Let S : V → V and T : V → V be linear transfor-
mations of a finite-dimensional vector space, then

1. det(ST ) = det(S) det(T ) and

2. if T is an isomorphism, det(T−1) = det(T )−1

Proposition 3.3.13 (Cramer’s rule) Let A be an invertible n×nmatrix.
The solution x to the system of equations Ax = b is the vector whose jth
entry is the quotient

det(Bj)/ det(A)

where Bj is the matrix obtained from A by replacing the jth column of A
by the vector b.

4 Eigenvalues, Eigenvectors, Diagonalization, and
the Spectral Theorem in Rn

4.1 Eigenvalues and Eigenvectors

Definition 4.1.2 Let T : V → V be a linear mapping

1. A vector x ∈ V is called an eigenvector of T if x ∕= 0 and there exists
a scalar λ ∈ R such that T (x) = λx

2. If x is an eigenvector of T and T (x) = λx, the scalar λ is called the
eigenvalue of T corresponding to x.

Proposition 4.1.15 A vector x is an eigenvector of T with eigenvalue λ
if and only if x ∕= 0 and x ∈ Ker(T − λI).

Definition 4.1.16 Let T : V → V be a linear mapping, and let λ ∈ R.
The λ-eigenspace of T, denoted Eλ, is the set

Eλ = {x ∈ V |T (x) = λx}

That is, Eλ is the set containing all the eigenvectors of T with eigenvalue
λ, together with the vector 0. If λ is not an eigenvalue of T, then we have
Eλ = {0}.

Proposition 4.1.7 Eλ is a subspace of V for all λ.
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Proposition 4.1.9 Let A ∈ Mn×n(R). Then λ ∈ R is an eigenvalue of A
if and only if det(A− λI) = 0.

Definition 4.1.11 Let A ∈ Mn×n(R). The polynomial det(A − λI) is
called the characteristic polynomial of A.

Remark The characteristic polynomial should only depends on the linear
mapping defined by the matrix A and not on the matrix itself. (if change
to another basis, the characteristic polynomial should be the same.)

Proposition 4.1.12 Similar matrices have equal characteristic polynomi-
als. proof: Suppose A and B are two similar matrices, so that B = Q−1AQ
for some invertible matrix Q. Then we have

det(B − λI) = det(Q−1AQ− λI)

= det(Q−1AQ−Q−1λIQ)

= det(Q−1(A− λI)Q)

= det(Q−1) det(A− λI) det(Q)

=
1

det(Q)
det(A− λI) det(Q)

= det(A− λI)



Examples 4.1.13

1. For a general 2× 2 matrix A =


a b
c d


we have

det(A− λI) = λ2 − Tr(A)λ+ det(A)

2. If we substitute A into its own characteristic polynomial, we get p(A) =
0. We find that A satisfies its own polynomial equation.

3. For a general 3× 3 matrix A =




a b c
d e f
g h i



 we have

det(A−λI) = −λ3+Tr(A)λ2−((ae−bd)+(ai−cg)+(ei−fh))λ+det(A)
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4. For any n× n matrix A, the characteristic polynomial has the form

(−1)nλn + (−1)n−1Tr(A)λn−1 + cn−1λ
n−2 + . . .+ c1λ+ det(A)

where the ci are other polynomial expressions in the entries of the
matrix A.

Corollary 4.1.14 Let A ∈ Mn×n(R). Then A has no more than n distinct
eigenvalues. In addition, if λ1, . . . ,λk are the distinct eigenvalues of A and
λi is an mi-fold root of the characteristic polynomial, then m1+. . .+mk ≤ n

Theorem 4.1.18 Let A ∈ Mn×n(R), and let p(t) = det(A − tI) be its
characteristic polynomial. Then p(A) = 0 (the n× n zero matrix).

4.2 Diagonalizability

Definition 4.2.1 Let V be a finite-dimensional vector space, and let T :
V → V be a linear mapping. T is said to be diagonalizable if there exists a
basis of V, all of whose vectors are eigenvectors of T.

Proposition 4.2.2 T : V → V is diagonalizable if and only if, for any
basis α of V, the matrix [T ]αα is similar to a diagonal matrix.

Proposition 4.2.4 Let xi(1 ≤ i ≤ k) be eigenvectors of a linear mapping
T : V → V corresponding to distinct eigenvalues λi. Then {x1, . . . ,xk} is a
linearly independent subset of V.

Corollary 4.2.5 For each i(1 ≤ i ≤ k), let {xi,1, . . . ,xl,nl
} be a linearly

independent set of eigenvectors of T all with eigenvalue λi and suppose the
λi are distinct. Then S = {x1,1, . . . ,x1,n1}∪ . . .∪{xk,1, . . . ,xk,nk

} is linearly
independent.

Proposition 4.2.6 Let V be finite-dimensional, and let T : V → V be
linear. Let λ be an eigenvalue of T, and assume that λ is an m-fold root of
the characteristic polynomial of T. Then we have

1 ≤ dim(Eλ) ≤ m
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Theorem 4.2.7 Let T : V → V be a linear mapping on a finite-dimensional
vector space V, and let λ1, . . . ,λk be its distinct eigenvalues. Let ml be the
multiplicity of λi as a root of the characteristic polynomial of T. Then T is
diagonalizable if and only if

1. m1 + . . .+mk = n = dim(V ), and

2. for each i, dim(Eλi
) = mi

Corollary 4.2.8 Let T : V → V be a linear mapping on a finite-dimensional
space V, and assume that T has n = dim(V ) distinct real eigenvalues. Then
T is diagonalizable.

Corollary 4.2.9 A linear mapping T : V → V on a finite-dimensional
space V is diagonalizable if and only if the sum of the multiplicities of the
real eigenvalues is n = dim(V ), and either

1. We have
k

i=1 dim(Eλi
) = n, where the λi are the distinct eigenvalues

of T, or

2. We have
k

i=1(n − dim(Im(T − λiI))) = n, where again λi are the
distinct eigenvalues.

Remark In order for a linear mapping or a matrix to be diagonalizable,
it must have enough linearly independent eigenvectors to form a basis of V.

4.3 Geometry in Rn

Example

f · g =

 b

a
f(x)g(x) dx

defines an inner product on [a, b].

Definition 4.3.5 The angle, θ, between two nonzero vectors x,y ∈ Rn is
defined to be

θ = cos−1(
< x,y >

||x|| · ||y||)

Definition of Orthogonal and Orthonormal Sets

1. S is an orthogonal set if ∀x,y ∈ S,x ∕= y =⇒ x · y = 0.

2. S is an orthonormal set if it is orthogonal and all elements are unit
vectors.
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Proposition 4.3.10 If x,y ∈ Rn are orthogonal, nonzero vectors, then
{x,y} is linearly independent.

Theorem Orthogonal sets of nonzero vectors are independent.
proof:

S = {x1, . . . , xn}
Suppose c1x1 + c2x2 + . . .+ cnxn = 0

0 = xi · 0

= xi ·
n

j=1

cjxj

=

n

j=1

cj(xi · xj)

=

n

j=1

cj(0 if i ∕= j)

= ci||xi||2

Since xi nonzero, then ci = 0∀i 

Definition of Bilinearity A mapping B : V × V → R is said to be
bilinear if B is linear in each variable, or more precisely if

1. B(cx+ y, z) = cB(x, z) +B(y, z) and

2. B(x, cy+ z) = cB(x,y) +B(x, z) for all x,y, z ∈ V and all c ∈ R

4.4 Orthogonal Projections and the Gram-Schmidt Process

Definition 4.4.1 The orthogonal complement of W, denoted W⊥, is the
set W⊥ = {v ∈ Rn| < v,w >= 0 for all w ∈ W}

Remark If we choose a basis {w1, . . . ,wk} for W, then v ∈ W⊥ iff v is
orthogonal to every vector in the basis.

Examples

1. W = {0}, then W⊥ = Rn

2. u1, u2 ∈ R3

Span{u1, u2}⊥ = {x|x · u1 = 0} ∩ {x|x · u2 = 0} = Ker


u1
u2
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Proposition 4.4.3

1. For every subspace W of Rn, W⊥ is also a subspace of Rn

2. We have dim(W ) + dim(W⊥) = dim(Rn) = n

3. For all subspaces W of Rn,W ∩W⊥ = {0}

4. Given a subspace W of Rn, every vector x ∈ Rn can be written
uniquely as x = x1 + x2, where x1 ∈ W and x2 ∈ W⊥. In other
words, Rn = W


W⊥

Definition of Orthogonal Projection Every vector x ∈ Rn can be
written uniquely as x = x1 + x2, where x1 ∈ W and x2 ∈ W⊥. Define
PW : Rn → Rn by PW (x) = x1.

Proposition 4.4.5

1. PW is a linear mapping

2. Im(PW ) = W , and if w ∈ W , then PW (w) = w (Identity transforma-
tion)

3. Ker(PW ) = W⊥

Proposition 4.4.6 Let {w1, . . . ,wk} be an orthonormal basis for the sub-
space W ⊂ Rn

1. For each w ∈ W , we have

w =

k

i=1

< w,wi > w

2. For all x ∈ Rn, we have

PW (x) =

k

i=1

< x,wi > wi

Remarks The real meaning of the statement is that we can use the inner
product to compute the scalars needed to express the relevant vector in W
as a linear combination of the basis vectors wi

proof: see textbook p194

31



Notes by Y.W.
4 EIGENVALUES, EIGENVECTORS, DIAGONALIZATION, AND

THE SPECTRAL THEOREM IN RN

Gram-Schmidt Orthogonalization Process Suppose we are given vec-
tors {u1, . . . ,uk} that are linearly independent but not necessarily orthogo-
nal, and we want to construct an orthogonal set of vectors {v1, . . . ,vk} with
the property that Span({u1, . . . ,uk}) = Span({v1, . . . ,vk}).

v1 = u1

W1 = Span{u1}
v2 = u2 − PW1(u2)

W2 = Span{v1,v2}
v3 = u3 − PW2(u3)

. . .

Wk = Span{v1, . . . ,vk−1}
vk = uk − PWk

(uk)

By proposition 4.4.6, we see that

PWj (v) =

j

i=1

< vi,v >

< vi,vi >
vi

Therefore,

v1 = u1

v2 = u2 −
< v1,u2 >

< v1,v1 >
v2

...

vj+1 = uj+1 −
j

i=1

< vi,uj+1 >

< vi,vi >
vi

Remark The real meaning of the statement is that we can use the inner
product to compute the scalars needed to express w and PW (x) as a linear
combination of the basis vectors wi.

Theorem 4.4.9 Let W be a subspace of Rn. Then there exists an or-
thonormal basis of W.
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4.5 Symmetric Matrices

Definition 4.5.1 A square matrix A is said to be symmetric if A = AT ,
where AT denotes the transpose of A.

Proposition 4.5.2a Let A ∈ Mn×n(R).

1. For all x,y ∈ Rn, < Ax,y >=< x, ATy >

2. A is symmetric if and only if < Ax,y >=< x, Ay > for all vectors
x,y ∈ Rn

proof:

1. x,y ∈ Rn, < Ax,y >= (Ax)Ty = xTATy =< x, ATy >

2. Obvious



Corollary 4.5.2b Let V be any subspace of Rn, let T : V → V be any
linear mapping, and let α = {x1, . . . ,xk} be any orthonormal basis of V.
Then [T ]αα is a symmetric matrix if and only if < T (x),y >=< x, T (y) >
for all vectors x,y ∈ V .

Definition 4.5.3 Let V be a subspace of Rn. A linear mapping T : V → V
is said to be symmetric if < T (x),y >=< x, T (y) > for all vectors x,y ∈ V .

Example An important class of symmetric mappings is orthogonal pro-
jections see textbook p202

Remark Write out the matrix of orthogonal projection transformation
with an orthonormal basis, we see a direct proof that orthogonal projections
are diagonalizable.

Fact 4.5.6 For any symmetric matrix:

1. All the roots of the characteristic polynomial are real.

2. eigenvectors corresponding to distinct eigenvalues are orthogonal.
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proof:
WLOG assume λ1 ∕= 0

< v1, v2 > =<
T (v1)

λ1
, v2 >

=
1

λ1
< T (v1), v2 >

=
1

λ1
< v1, T (v2) >

=
1

λ1
< v1,λ2v2 >

=
λ2

λ1
< v1, v2 >

Since λ1 ∕= λ2, we have < v1, v2 >= 0 

Theorem 4.5.7 Let A ∈ Mn×n(R) be a symmetric matrix, let x1 be an
eigenvector of A with eigenvalue λ1, and let x2 be an eigenvector of A with
eigenvalue λ2, where λ1 ∕= λ2. Then x1 and x2 are orthogonal vectors in Rn.

4.6 The Spectral Theorem

Theorem 4.6.1 - The Spectral Theorem Let T : Rn → Rn be a sym-
metric linear mapping. Then there is an orthonormal basis of Rn consisting
of eigenvectors of T. In particular, T is diagonalizable.
proof: By induction

Base Case
If n = 1, then every linear mapping is symmetric and diagonalizable.

Inductive Step
Assume the theorem is true for mappings from Rk to Rk and consider
T : Rk+1 → Rk+1.
Let λ be any one of the eigenvalues, and let x1 be any unit eigenvector with
eigenvalue λ.
Let W = Span({x1}). Note that W⊥ is a k-dimensional subspace of Rk+1,
so W⊥ is isomorphic to Rk, and we can apply I.H. to T |W⊥

1. To see that T takes vectors in W⊥ to vectors in W⊥, note that if
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y ∈ W⊥, then

< x1, T (y) > =< T (x1),y >

=< λx1,y >

= 0 (Since y ∈ W⊥)

Hence T (y) ∈ W⊥

2. To see that the restriction of T to W⊥ is still symmetric, note that
if y1,y2 ∈ W⊥, then < T (y1),y2 >=< y1, T (y2) >, since this holds
more generally for all vectors in Rk+1.

Hence by I.H. applied to T |W⊥ , there exists an orthonormal basis {x2, . . . ,xk+1}
of W⊥, consisting of eigenvectors of the restricted mapping. Union with x1,
we have the conclusion. 

Theorem 4.6.3 Let T : Rn → Rn be a symmetric linear mapping, and
let λ1, . . . ,λk be the distinct eigenvalues of T. let Pi be the orthogonal
projection of Rn onto the eigenspace Eλi

. Then

1. T = λ1P1 + . . .+ λkPk, and

2. I = P1 + . . .+ Pk

Remark Spectral Decomposition. This says that x can be recovered or
built up from its projections on the various eigenspaces of T.

5 Complex Numbers and Complex Vector Spaces

5.1 Complex Numbers

Definition 5.1.1 The set of complex numbers, denoted C, is the set of
ordered pairs of real numbers (a, b) with the operations of addition and
multiplication defined by

(a, b) + (c, d) = (a+ c, b+ d)

and the product of (a, b) and (c, d) is the complex number defined by

(a, b)(c, d) = (ac− bd, ad+ cb)
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Definition 5.1.2 Let z = a + bi ∈ C, The real part of z, denoted Re(z),
is the real number a. The imaginary part of z, denoted Im(z), is the real
number b. z is called a real number if Im(z) = 0, and purely imaginary if
Re(z) = 0.

Definition 5.1.4 A field is a set F with two operations, defined on ordered
pairs of elements of F , called addition and multiplication. Addition assigns
to the pair x and y ∈ F there sum, which is denoted by x + y and multi-
plication assigns to the pair x and y ∈ F their product, which is denoted by
x · y or xy. These two operations must satisfy the following properties for
allx, y and z ∈ F :

1. Commutativity of addition: x+ y = y + x

2. Associativity of addition: (x+ y) + z = x+ (y + z)

3. Existence of an additive identity: There is an element 0 ∈ F , called
zero, such that x+ 0 = x

4. Existence of additive inverses: For each x there is an element −x ∈ F
such that x+ (−x) = 0

5. Commutativity of multiplication: xy = yx

6. Associativity of multiplication: (xy)z = x(yz)

7. Existence of a multiplicative identity: There is an element 1 ∈ F ,
called 1, such that x · 1 = x

8. Existence of multiplicative inverses: If x ∕= 0, then there is an element
x−1 ∈ F such that xx−1 = 1

Examples

1. F = C

2. F = R

3. F = Q

4. F = Z/pZ, p prime

5. Algebraic numbers = {x|p(x) = 0, for a polynomial p with integer
coefficients}
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Counter-Example Pn(R)

Proposition 5.1.5 The set of complex numbers is a field with the opera-
tions of addition and scalar multiplication as defines previously.

More definitions about complex numbers z = a+ bi
complex conjugate: z̄ = a− bi
z−1 = z̄

zz̄ since zz̄ = a2 + b2

Proposition 5.1.7

1. The additive identity in a field is unique

2. The additive inverse of an element of a field is unique

3. The multiplicative identity of a field is unique

4. The multiplicative inverse of a nonzero element of a field is unique

Definition 5.1.8 The absolute value of the complex number z = a+ bi is
the nonnegative real number

√
a2 + b2 and is denoted by |z| or r = |z|. The

argument of the complex number z is the angle θ of the polar coordinate
representation of z. Can write z = |z|(cos(θ) + i sin(θ))

Remark In general, if n is an integer,

zn = rn(cos(nθ) + i sin(nθ))

Definition 5.1.11 A field F is called algebraically closed if every polyno-
mial p(z) = anz

n+. . .+a1z+a0 with coefficients in F, ai ∈ F for i = 0, . . . , n,
has n roots in F .

Statement of De Moivre’s Theorem.

∀x ∈ R, n ∈ Z, (cos(x) + i sin(x))n = cos(nx) + i sin(nx)

We can also reformulate this into the familiar notation that we used above,
denoting the absolute value, or length, of the complex number, we have

zn = |z|n (cos(nθ) + i sin(nθ))
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Relation w/ Euler’s Formula. First, we recall the Euler Formula as
below

eiθ = cos θ + i sin θ

Notice that in a special case of θ = π, the above identity is a.k.a Euler’s
Identity(eiπ + 1 = 0). Considering any z ∈ C, to derive the above identity,
we have the following

z = |z|eiθ

zn = |z|n

eiθ

n

= |z|neiθn

= |z|n (cosnθ + i sinnθ)

notice that we can now interchange, as we please, cos θ + i sin θ with eiθ. 

Theorem 5.1.12 C is algebraically closed and C is the smallest alge-
braically closed field containing R

5.2 Vector Spaces Over a Field

Definition 5.2.1 A vector space over a field F is a set V (whose elements
are called vectors) together with addition and multiplication and 8 axioms
as in chapter 1.

Example Fn = {x = (x1, . . . , xn)|xi ∈ F, for i = 1, . . . , n}

5.3 Geometry in a complex vector space

Definition 5.3.1 Let V be a complex vector space, A Hermitian inner
product on V is a complex valued function on pairs of vectors in V, denoted
by < u,v >∈ C for u,v ∈ V , which satisfies the following properties:

1. For all u,v, and w ∈ V and a, b ∈ C, < au + bv,w >= a < u,w >
+b < v,w >

2. For all u,v,∈ V,< u,v >= < v,u >, and

3. For all v ∈ V,< v,v >≥ 0 and < v,v >= 0 implies v = 0
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Example 5.3.2 Hermitian inner product on Cn

For x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Cn, we define their inner
product by < x,y >= x1ȳ1+ . . .+xnȳn, which satisfies the Hermitian inner
product properties.

Definition 5.3.7 Let V be a finite dimensional Hermitian inner product
space and let α be an orthonormal basis for V. The adjoint of the linear
transformation T : V → V is the linear transformation T ∗ whose matrix
with respect to the orthonormal basis α is the matrix ([T̄ ]αα)

t; that is, [T ∗]αα =
([T̄ ]αα)

t

Proposition 5.3.8 Let V be a finite dimensional Hermitian inner product
space. The adjoint of T : V → V satisfies < T (v,w) >=< v, T ∗(w) > for
all v and w ∈ V .

Definition 5.3.9 T : V → V is called Hermitian or self-adjoint if <
T (u),v >=< u, T (v) > for all u and v ∈ V . Equivalently, T is Hermitian
or self-adjoint if T = T ∗ or [T̄ ]αtα = [T ]αα for an orthonormal basis α. An
n× n complex matrix is called Hermitian or self-adjoint if A = A∗.

Proposition 5.3.10 If λ is an eigenvalue of the self-adjoint linear trans-
formation T, then λ ∈ R

Proposition 5.3.11 If u and v are eigenvectors, respectively, for distinct
eigenvalues λ and µ of a self adjoint transformation T : V → V , then
< u,v >= 0, so u and v are orthogonal.

Theorem 5.3.12 Let T : V → V be a self-adjoint transformation of a
complex vector space V with Hermitian inner product <,>. Then there is
an orthonormal basis of V consisting of eigenvectors for T and, in particular,
T is diagonalizable.

Theorem 5.3.13 Let T : V → V be a self-adjoint transformation of a
complex vector space V with Hermitian inner product <,>. Let λ1, . . . ,λk ∈
R be the distinct eigenvalues for T, and Let Pi be the orthogonal projections
of V onto the eigenspaces Eλi

, then

1. T = λ1P1 + . . .+ λkPk

2. I = P1 + . . .+ Pk
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6 Jordan Canonical Form

A next best form after a diagonal form for the matrices of linear mappings
that are not necessarily diagonalizable

6.1 Triangular Form

Definition 6.1.2 Let T : V → V be a linear mapping. A subspace W
⊂ V is said to be invariant (or stable) under T if T (W ) ⊂ W .

Proposition 6.1.4 Let V be a vector space, let T : V → V be a linear
mapping, and let β = {x1, . . . , xn} be a basis for V. Then [T ]ββ is upper
triangular if and only if each of the subspaces Wi = Span({x1, . . . , xi}) is
invariant under T.
Note that the subspaces Wi in the proposition are related as follows:

{0} ⊂ W1 ⊂ W2 ⊂ . . . ⊂ Wn−1 ⊂ Wn = V

The Wi form an increasing sequence of subspaces.

Definition 6.1.5 We say that a linear mapping T : V → V on a finite-
dimensional vector space V is triangularizable if there exists a basis β such

that [T ]ββ is upper-triangular.

Proposition 6.1.6 Let T : V → V , and let W ⊂ V be an invariant sub-
space. Then the characteristic polynomial of T |W divides the characteristic
polynomial of T.

Remark Every eigenvalue of T |W is also an eigenvalue of T (the set of
eigenvalues of T |W is some subset of the eigenvalues of T on the whole
space).

Theorem 6.1.8 Let V be a finite-dimensional vector space over a field
F, and let T : V → V be a linear mapping. Then T is triangularizable if
and only if the characteristic polynomial equation of p(t) has dim(V ) roots
(counted with multiplicities) in the field F.

Remark The theorem implies that every matrix A ∈ Mn×n(C) may be
triangularized.
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Proof of Lemma Let α = {x1, . . . , xk} be a basis for W and extend α by
adjoining α′ = {xk+1, . . . , xn} to form a basis β = {x1, . . . , xk, xk+1, . . . , xn}
for V. Let W ′ = Span(W ′).
Define P : V → V by

P (a1x1 + . . .+ anxn) = a1x1 + . . .+ akxk

Notice that Ker(P ) = W ′, Im(P ) = W,P 2 = P . P is called the projection
on W with kernel W ′. Then I − P is the projection on W ′ with kernel W .
Then I − P is the projection on W ′ with kernel W .
Let S = (I − P )T . Since Im(I − P ) = W ′, we see by prop2.5.6 that
Im(S) ⊂ Im(I − P ) = W ′. Hence W’ is an invariant subspace of S. Then
the eigenvalues of S|W ′ is a subset of the set of eigenvalues of T. Since all
the eigenvalues of T lie in the filed F, the same is true of all the eigenvalues
of S|W ′ . Hence there is some nonzero vector x ∈ W ′ and some λ ∈ F such
that S(x) = λx. So

(I − P )T (x) = λx

=⇒ T (x)− PT (x) = λx

=⇒ T (x) = λx+ PT (x)

where λx ∈ Span({x}) and PT (x) ∈ W . Therefore W + Span({x}) is also
invariant under T and this finishes the proof. 

Proof of Theorem 6.1.8 →: If T is triangularizable, then there exists a
basis β for V such that [T ]ββ is upper-triangular. The eigenvalues of T are
the diagonal entries of this matrix, so they are elements of the field F.
←: If all the eigenvalues are in F:
Let λ be any eigenvalue of T, and let x1 be an eigenvector of λ, let W1 =
Span({x1}). By definition W1 is invariant under T. Now, assume by induc-
tion that we have constructed invariant subspaces W1 ⊂ W2 ⊂ . . . ⊂ Wk

with Wi = Span({x1, . . . , xl}) for each i. By Lemma 6.1.10 there exists a
vector xk+1 /∈ Wk such that the subspace Wk+1 = Wk + Span({xk+1}) is
also invariant under T. We continue this process until we have produced a
basis for V. Hence, T is triangularizable. 

Lemma 6.1.10 Let T : V → V be as in the theorem, and assume that
the characteristic polynomial of T has n = dim(V ) roots in F. If W  V is
an invariant subspace under T, then there exists a vector x ∕= 0 in V such
that x /∈ W and W + Span({x}) is also invariant under T.
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Remark What this says is that we can make a T-invariant subspace 1-
dimension bigger.

Corollary 6.1.11 If T : V → V is triangularizable, with eigenvalues λi

with respective multiplicities mi, then there exists a basis β for V such that
[T ]ββ is upper-triangular, and the diagonal entries of [T ]ββ arem1λ1’s, followed
by m2λ2’s, and so on.

Theorem 6.1.12 (Cayley-Hamilton) If T : V → V be a linear mapping
on a finite-dimensional vector space V, and let p(t) = det(T − tI) be its
characteristic polynomial. Assume that p(t) has dim(V ) roots in the field F
over which V is defined. Then p(T ) = 0

6.2 A Canonical Form For Nilpotent Mappings

Definition A linear mapping N : V → V is nilpotent if Nk = 0 for some
integer k ≥ 1.

Proposition N : V → V is nilpotent if and only if it has one eigenvalue
λ = 0 with multiplicity n = dim(V ).

Proposition 6.2.3 With all notations as before:

1. Nk−1(x) is an eigenvector of N with eigenvalue λ = 0

2. C(x) is an invariant subspace of V under N.

3. The cycle generated by x ∕= 0 is a linearly independent set. Hence
dim(C(x)) = k, the length of the cycle.

Proposition 6.2.4 Let α1 = {Nki−1(xi), . . . ,xi}(1 ≤ i ≤ r) be cycles of
lengths ki, respectively. If the set of eigenvectors {Nki−1(x1), . . . , N

kr−1(xr)}
is linearly independent, then α1 ∪ . . . ∪ αr is linearly independent.

Remark For a given x ∈ V , either x = 0 or there is a unique integer k,
1 ≤ k ≤ n, such that Nk(x) = 0 but Nk−1(x) ∕= 0.
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Definitions 6.2.1 Let N,x ∕= 0 and k be as before

1. The set {Nk−1(x), Nk−2(x), . . . ,x} is called the cycle generated by x.
x is called the initial vector of the cycle.

2. The subspace Span({Nk−1(x), Nk−2(x), . . . ,x} is called the cyclic subspace
generated by x, and denoted C(x)

3. The integer k is called the length of the cycle

Definition 6.2.5 We say that the cycles αi = {Nki−1(xi), . . . , xi} are
non-overlapping cycles if α1 ∪ . . . ∪ αr is linearly independent.

Definition 6.2.7 Let N : V → V be a nilpotent mapping on a finite-
dimensional vector space V. We call a basis β for V a canonical basis (with
respect to N) if β is the union of a collection of nonoverlapping cycles for N.

Theorem 6.2.8 (Canonical form for nilpotent mappings) Let N :
V → V be a nilpotent mapping on a finite-dimensional vector space. There
exists a canonical basis β of V with respect to N.

Lemma 6.2.9 Consider the cycle tableau corresponding to a canonical
basis for a nilpotent mapping N : V → V . As before, let r be the number of
rows, and let ki be the number of boxes in the ith row (k1 ≥ k2 ≥ . . . ≥ kr).
For each j(1 ≤ j ≤ k1), the number of boxes in the jth column of the tableau
is dim(Ker(N j))− dim(Ker(N j−1).

Corollary 6.2.11 The canonical form of a nilpotent mapping is unique
(provided the cycles in the canonical basis are arranged so the lengths satisfy
k1 ≥ k2 ≥ . . . ≥ kr)

6.3 Jordan Canonical Form

Proposition 6.3.1 Let T : V → V be a linear mapping whose char-
acteristic polynomial has dim(V ) roots (λi with respective multiplicities
mi, 1 ≤ i ≤ k) in the field F over which V is defined.
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(a) There exist subspaces V ′
i ⊂ V (1 ≤ i ≤ k) such that

1. Each V ′
i is invariant under T

2. T |V ′
i
has exactly one distinct eigenvalue λi, and

3. V = V ′
1


. . .


V ′
k

(b) There exists a basis β for V such that [T ]ββ has a direct sum decom-

position into upper-triangular blocks of the form





λ 1 0 . . . 0
0 λ 1 . . . 0
...

. . .
. . .

. . . 1
0 . . . 0 λ





Definition 6.3.2 Let T : V → V be a linear mapping on a finite-dimensional
vector space V. Let λ be an eigenvalue of T with multiplicity m.

1. The λ-generalized eigenspace, denoted byKλ, is the kernel of the map-
ping (T − λI)m on V.

2. The nonzero elements of Kλ are called generalized eigenvectors of T.

Definitions 6.3.5

1. A matrix of the form





λi 1 0 . . . 0
0 λi 1 . . . 0
...

. . .
. . .

. . . 1
0 . . . 0 λi




is called a Jordan block matrix

2. A matrix A ∈ Mn×n(F) is said to be in Jordan canonical form if A is
a direct sum of Jordan block matrices.

Theorem 6.3.6 (Jordan Canonical Form) Let T : V → V be a linear
mapping on a finite-dimensional vector space V whose characteristic poly-
nomial has dim(V ) roots in the field F over which V is defined.

1. There exists a basis γ (called a canonical basis) of V such that [T ]γγ
has a direct sum decomposition into Jordan block matrices.

2. In this decomposition the number of Jordan blocks and their sizes are
uniquely determined by T. (The order in which the blocks appear in
the matrix may be different for different canonical bases, however).
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6.4 Computing Jordan Form

Algorithm

1. Find all the eigenvalues of T and their multiplicities by factoring the
characteristic polynomial completely (assume the field is algebraically
closed)

2. For each distinct eigenvalue λi in turn, construct the cycle tableau for a
canonical basis of Kλi

with respect to the mapping Ni = (T −λiI)|Kλi

using the method: for each j, the number of boxes in the jth column
of the tableau for λi will be

dim(Ker(T − λiI)
j)− dim(Ker(T − λiI)

j−1

3. Form the corresponding Jordan blocks and assemble the matrix of T.
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7 Problem Notes

1 S = {a} ⊆ R2, then we cannot determine whether S is dependent (when
a = 0) or independent (when a ∕= 0)

2 If a set in a vector space contains the zero vector, then it is linearly
dependent.

3 The order of Jordan blocks does not matter: if you change the order of
Jordan blocks, it is still equivalent to the original one.

8 Proof Clinic - JCF

Facts

1. Eλ ⊂ Kλ, and both are T-invariant

2. ∀µ ∕= λ, (T − µI)|Kλ
is bijective

3. Kλ = Ker((T − λI)mi)

4. Bases βi,βj for Kλi
and Kλj

, respectively, are disjoint if λi ∕= λj

5. ∪
λ
βKλ

is a basis for V if each βKλ
is a basis for Kλ

6. T is diagonalizable ⇐⇒ Kλ = Eλ ∀λ

7. V =

λ

Kλ

8. Similar matrices have the same JCF

Suppose β = ∪
λ
γλ is a basis of V, where each γλ is a cycle of generalized

eigenvectors of T. Then Span(γλ) is T-invariant and [T |Span(γλ)]γλ is a Jor-
dan block and β is a Jordan canonical basis.
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