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1 May 7th - Introduction, p-values and statistical
significance

Definition 1.1 - Statistical Analysis Data Analysis that relies on Prob-
ability theory to account for the variability of the data.

Permutation Test 1.2 Insert random premise, observe two samples Group
A and Group B.
If the groups have no effect, all of the permutations are equally likely.
We can plot the Permutation Distribution with respect to difference between
sample means.

Characteristics of Permutation Test 1.3

1. Involves simple probability theory

2. distribution-free

3. listing all the permutation for large dataset is almost impossible

Definition 1.4 - Statistical Significance We say a difference is statis-
tically significant if it’s less probable than our pre-determined significance
level. (when p-value p < significance level α)

Definition 1.5 - Significant Effect We say the groups have a signifi-
cant effect if it causes the variable of interest to be significantly different.

2 May 9th - Hypothesis testing, t-test and ANOVA

2.1 The basics

Fact 2.1.1 If H0 is true, the p-value ∼ U(0, 1)

remarks: This is saying that if p-value is greater than significance level,
then it does not say anything about our confidence, it’s just a value. Proof
can be found online.

Tradeoff Between Type I and Type II Error It’s common to fix α
(significance level or type-I error) and minimize type-II error.
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2.2 t-test

Under the model (yi|X = xi) ∼ N(β0 + β1xi,σ
2), an unbiased estimator of

σ2 is

S2 =

󰁓n
i=1(yi − ŷi)

2

n− 2

Then
β̂1 − β1󰁴

S2

SXX

∼ t(n−2)

2.3 One-way Analysis of variance (ANOVA)

Suppose the response Y is quantitative and the predictor X is categorical,
taking t values or levels denoted 1, . . . , t. With the regression model, we
assume that the only aspect of the conditional distribution of Y , given X =
x, that changes as x changes, is the mean.
Suppose we are interested in assessing whether or not there is a relationship
between the response and the predictor. There is no relationship if and
only if all the conditional distributions are the same. This is true under our
assumptions if and only if all the means are equal. In our case, one-way
ANOVA is an extension of the t-test to 3 or more samples focus analysis on
group differences.
H0: All groups are the same. If groups are different, we expect there is
a bigger difference between groups (the group effect) than within groups
(natural variability of the data).

Basic Definitions Suppose we have T groups and nt observations for the
t-th group, and we denote each observation as y.

1. SST: This is the sum of the squared deviations between each observa-
tion and the overall mean:

SST =

T󰁛

t=1

nt󰁛

i=1

(yi,t − ȳ)2

2. SSE: This is the sum of the squared deviations between each observa-
tion and the mean of the group to which it belongs:

SSE =

T󰁛

t=1

nt󰁛

i=1

(yi,t − ȳt)
2
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3. SSG: This is the sum of the squared deviations between each group
mean and the overall mean:

SSG =

T󰁛

t=1

nt󰁛

i=1

(ȳt − ȳ)2

Sum of Squares Decomposition Total sum of squares = Within group
sum of squares + Between group sum of squares

T󰁛

t=1

nt󰁛

i=1

(yi,t − ȳ)2 =

T󰁛

t=1

nt󰁛

i=1

(yi,t − ȳt)
2 +

T󰁛

t=1

nt󰁛

i=1

(ȳt − ȳ)2

In shorthand:
SST = SSE + SSG

proof:
add −ȳt+ ȳt inside the squared error term and everything is just like a short
proof in STA261, nothing interesting. 󰃈

ANOVA We want to assess how large is SSG relative to SSE, but it
would be hard to establish a distribution for SSG/SSE. Knowing a sum of
squares divided by its degrees of freedom has a chi-square distribution, we
can conclude that

SSG/(T − 1) ∼ χ2
T−1, SSE/(n− T ) ∼ χ2

n−T

Theorem 2.2.1 If between-groups and within-groups variance are equal
(σT = σε), then

SSG/(T−1)
SSE/(n−T ) ∼ FT−1,n−T

proof:

In STA261, we’ve proven that if σ2
x = σ2

y , then
σ̂2
x

σ̂2
y
∼ Fn−1,n−1.

Since SSG/(T-1) is an estimation for the variation between groups (σT ) and
SSE/(n−T ) is an estimation for the variation within groups (σε), then the
result follows. 󰃈

Remarks 2.2.2 Thus a small p-value indicates theses variances are dif-
ferent, which is evidence for the existence of some group effect.
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Theorem 2.2.3 One-way ANOVA Table if p-value < α, we reject H0:
groups have no effect.
Source Sum of Squares df Mean Squares Test Statistic

Between SSG T − 1 MSG = SSG
T−1 F = MSG

MSE

Within SSE n− T MSE = SSE
n−T

Total SST n− 1

3 May 14th - Linear Regression: Least Square Er-
ror Formulation

3.1 Matrix Notation

x =

󰀗
x1
x2

󰀘
is a random variable.

In addition, A =

󰀵

󰀷
a11 a12
a21 a22
a31 a32

󰀶

󰀸, c =

󰀵

󰀷
c1
c2
c3

󰀶

󰀸.

Then

E[x] = µ =

󰀗
µ1

µ2

󰀘

V ar[x] = Σ =

󰀗
σ2
1 σ2

12

σ2
12 σ2

2

󰀘

where σ2
ij = cov(xi, xj).

Theorem 3.1.1 Let z = Ax+ c. Then

E[z] = Aµ+ c

V ar[z] = AΣAT

3.2 Linear Regression

We have a vector of n predictors x = [x1, . . . , xn], as well as n associated
response variables y = [y1, . . . , yn]. We want to estimate the parameters β0
and β1 that best fit the model y = β0 + β1x. (In matrix notation: y = Xβ

where y =

󰀵

󰀹󰀷
y1
...
yn

󰀶

󰀺󰀸 , X =

󰀵

󰀹󰀷
1 x1
...

...
1 xn

󰀶

󰀺󰀸 ,β =

󰀗
β0
β1

󰀘
).
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3.2.1 Least Square Estimation

Minimize sum of squared errors:

n󰁛

i=1

(β0 + β1xi − yi)
2

We take derivative of
󰁓n

i=1(y−Xβ̂)2 wrt β̂, set this to 0 and get

Theorem 3.2.1.1
β̂ = (XTX)−1XTy

ŷ = Xβ̂ = X(XTX)−1XTy

Remark 3.2.1.2 X(XTX)−1XT is called the hat matrix since it puts the
hat on y. This matrix (H) has the following properties:

1. HT = H

2. HH = H

3. HX = X

3.2.2 ANOVA

Estimate how good a linear regression model is.

Basic Definitions ȳ is called base estimation.

1. SST: This is the sum of the squared deviations between each observa-
tion and the mean:

SST =

n󰁛

i=1

(yi − ȳ)2

2. SSE: This is the sum of the squared deviations between each observa-
tion and the corresponding prediction

SSE =

n󰁛

i=1

(ŷi − yi)
2

unexplained variation: How much our explanation is away from the
true observation?
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3. SSG: This is the sum of the squared deviations between each predic-
tion and the mean.

SSG =

n󰁛

i=1

(ŷi − ȳ)2

explained variation: How much our explanation takes us away from
the base prediction?

Coefficient of Determination

R2 =
SSG

SST
= 1− SSE

SST

(0 ≤ R2 ≤ 1)
The closer R2 is from 1, the better the fit is.

4 May 16th - Linear Regression: Maximum Like-
lihood Formulation

4.1 the Linear Regression Model

Definition 4.1.1 The best linear unbiased estimator (BLUE) is the unbi-
ased estimator with the lowest variance.

Gauss-Markov Assumptions 4.1.2 If E[ei] = 0, Cov(ei, ej) = 0 ∀i ∕= j
and V ar(ei) = σ2 < ∞∀i, then the best linear unbiased estimator for β’s
are given by minimizing the MSE

the Linear Regression Model

yi = β0 + β1xi + ei

where ei is a random variable that represents the residual.

Assumptions

1. ei
i.i.d.∼ N(0,σ2) which follows the Gauss-Markov assumptions.

2. (y|x) ∼ N(Xβ, Iσ2) or (Y |X = x) ∼ N(β0 + β1x,σ
2)
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4.2 Maximum Likelihood Estimation

l(β|x) = −n

2
log(2π)− n log(σ)− 1

2σ2
(y−Xβ)T (y−Xβ)

Maximizing this term wrt β is equivalent to minimizing (y−Xβ)T (y−Xβ),
which gives

β̂ = (XTX)−1XTy

Corollary 4.2.1 Minimizing MSE and the likelihood function leads to the
same estimate β̂.

A Biased Estimator of σ2

l(β|x) = −n

2
log(2π)− n log(σ)− 1

2σ2
(y−Xβ)T (y−Xβ)

Maximizing the likelihood function wrt to σ2:

σ̂2 =
(y−Xβ̂)T (y−Xβ̂)

n
=

󰁓n
i=1(yi − ŷi)

2

n

This is MLE, a biased estimator of σ2.
The unbiased estimator of σ2 is

󰁓n
i=1(yi − ŷi)

2

n− 2

4.3 Inference

The action of extracting information about parameters given a dataset.

Mean and Variance of y Since y ∼ N(Xβ, Iσ2, then E[y] = Xβ and
V ar[y] = Iσ2.

Mean and Variance of β̂

E[β̂] = E[(XTX)−1XTy]

= (XTX)−1XTE[y]

= (XTX)−1XTXβ

= β
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=⇒ β̂ is an unbiased estimator of β.

V ar[β̂] = V ar[(XTX)−1XTy]

= (XTX)−1XT V ar[y|X]((XTX)−1XT )T

= (XTX)−1XT Iσ2((XTX)−1XT )T

= σ2(XTX)−1XT ((XTX)−1XT )T

= σ2(XTX)−1XT (X((XTX)−1)T )

= σ2(XTX)−1XT (X((XTX)T )−1)

= σ2(XTX)−1XTX(XTX)−1

= σ2(XTX)−1

Theorem 4.3.0.1
β̂ ∼ N(β, (XTX)−1σ2)

proof:

β̂ = (XTX)−1XTy, so β̂ is a linear combination of normal r.v.’s(yi’s), there-
fore β̂ follows normal distribution with mean and variance we have calcu-
lated. 󰃈

4.3.1 Inference for β1

β̂1 ∼ N(β1,
σ2

SSX
)

where SSX =
󰁓n

i=1(xi − x̄)2 Then

β̂1 − β1

σ/
√
SSX

∼ N(0, 1)

Theorem 4.3.1.1
(n− 2)S2

σ2
∼ χ2

(n−2)

where S2 = 1
n−2

󰁓n
i=1(yi − β0 − β1xi)

2

Theorem 4.3.1.2
β̂1 − β1

S/
√
SSX

∼ tn−2

where SSX =
󰁓n

i=1(xi − x̄)2
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Model Checking H0: β1 = 0 Then under H0, Theorem 4.3.1.2 applies.

1. If the p-value is small, then y and x are statistically significant.

2. 0.95 confidence level for β1:

(β̂1 − t(n−2)(1−α
2
)

S√
SSX

, β̂1 + t(n−2)(1−α
2
)

S√
SSX

)

4.3.2 Inference for β0

β̂0 ∼ N(β0,σ
2

󰁓
x2i

nSSX
)

5 May 23th - Diagnostic for the linear regression
model

Review of the model

yi = β0 + β1xi + ei

where ei ∼ N(0,σ2)

y = Xβ + e =⇒ y|X ∼ N(Xβ, Iσ2)

where
β̂MLE = (XTX)−1XTy

β̂ ∼ N(β,σ2(XTX)−1)

Notes In all cases, we have
󰁓n

i=1 ei = 0.

5.1 Predictive Inference

Since ŷ = Xβ̂, then

ŷ ∼ N(Xβ,σ2X(XTX)−1XT )

Prediction For a new, unobserved predictor x∗, a simple prediction for
the response could be

y∗ = β0 + β1x
∗
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Predictive Distribution We have β̂ = [β̂0, β̂1]
T , then

ŷ∗ = β̂0 + β̂1x
∗

Matrix notation:
ŷ∗ = X∗β̂

where X∗ is a vector of new observation x∗ added a column of 1s.
then

ŷ∗ ∼ (X∗β,σ2X∗(XTX)−1X∗T )

Confidence Interval for X∗β

ŷ∗ −X∗β

σ
󰁳

X∗(XTX)−1X∗T
∼ N(0, I)

Then

0.95CI = ŷ∗i ± 1.96 ∗ σ
󰁴

[X∗(XTX)−1X∗T ]ii

Remarks The confidence interval reflects our uncertainty about the pop-
ulation regression line

the Prediction Error

y∗ − ŷ∗ = β0 + β1x
∗ + ε∗ − (β̂0 + β̂1x

∗)

Matrix notation:
y∗ − ŷ∗ = X∗β + ε−X∗β̂

Distribution:
y∗ − ŷ∗ ∼ N(µ,Σ)

where

µ = E[X∗β + ε−X∗β̂]

= X∗β + E[ε]− E[X∗β̂]

= X∗β + 0−X∗β

= 0

Σ = V ar[X∗β + ε−X∗β̂]

= V ar[ε−X∗β̂]

= V ar[ε] + V ar[X∗β̂] + 2Cov[ε, X∗β̂]

= σ2I + σ2X∗(XTX)−1X∗T + 0

= σ2[I +X∗(XTX)−1X∗T ]
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Then we can construct a CI for y∗ using t-distribution (df = n− 2)

Remarks Prediction intervals reflect uncertainty from both β̂ and ε (i.e.
the irreducible error). The irreducible error is estimated using training sam-
ple.

Reducible and irreducible errors

1. Reducible error is the error arising from the mismatch between f̂ and
f . f is the true relationship between X and Y , but we can’t see f
directly - we can only estimate it. We can reduce the gap between our
estimate and the true function by applying improved methods.

2. Irreducible error arises from the fact that X doesn’t completely deter-
mine Y. That is, there are variables outside of X - and independent of
X - that still have some small effect on Y. The only way to improve
prediction error related to irreducible error is to identify these outside
influences and incorporate them as predictors.

5.2 Checking the Model Assumption

We will divide model checking into 3 pieces:

1. Error assumption (ei
i.i.d∼ N(0,σ2))

2. Identical distribution (checking for unexpected observations)

3. Model assumption (linearity)

5.2.1 Checking Error Assumption

We only have access to the residuals (observed errors)

êi = yi − ŷi

ê = (I −H)y

Constant variance Check V ar(ei) = σ2 ∀i
Plot the residuals against the fitted values(ŷi)

Normality of residuals Quantile to Quantile plot (QQplot)
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Uncorrelatedness / Independence

1. Scatter plot (y against x)

2. Residual plot against predictors (see if clustered around zero and looks
random)

3. Residual Sequence plot

Remarks We rarely check for this assumption

5.2.2 Unusual Observations

Definition 5.2.2.1 - Leverage points A leverage point is a point whose
x-value is distant from the other x-values

leverages In the linear regression model, the leverage for the i-th obser-
vation is defines as:

hi = Hii =
1

n
+

(xi − x̄)2󰁓n
j=1(xj − x̄)2

where H = X(XTX)−1XT

Property:
󰁓n

i=1 hi = 2 (number of parameters)

Remarks The average value for h is 2/n. Usually leverages larger than
4/n should be looked at more closely.

Definition 5.2.2.2 - Outliers An outlier is a data point whose y-value
differs significantly from other observations.

Remarks Usually large residual ŷi − yi might indicate outliers

Definition 5.2.2.3 - Influential observations An influential point is
one whose removal from the dataset would cause a large change in the fit.
They could be leverage points, outliers but usually the both.

Remarks An outlier with a large leverage will definitely be an influential
observation. It is sometimes called a bad leverage
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Definition 5.2.2.4 - Cook’s Distance For observation i, the Cook’s distance
is

Di =
r2i
2

hi
1− hi

where ri is the standardized residual and hi is the leverage.

Remarks ri measures the extent of outlying, hi measures the leverage.
Thus, a large value of Di indicates influential observations.

Simple rules of thumb There is a problem when

1. Di > 4/n on large datasets

2. Di > 1 on small datasets

3. Di is separated by a large gap from the other Djs

6 May 28th - Dummy variables and introduction
to multiple linear regression

6.1 Transformation

We can use transformations to fix 2 problems:

1. Non-constant variance

2. Non-linearity

When the variance is exploding, typically we raise y to a power between 0
and 1 or apply a logarithmic transformation.

Logarithmic Transformation

log(yi) = β0 + β1xi + ei

yi = exp(β0) exp(β1xi) exp(ei)
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Box-Cox Transformation Let’s consider a family of possible transfor-
mations gλ(y)

gλ(y) =

󰀫
yλ−1
λ if λ ∕= 0

log(y) if λ = 0

λ is selected by the model achieving the highest log-likelihood:

gλ(yi) ∼ N(β0 + β1xi,σ
2)

l(λ|y) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

n󰁛

i=1

(gλ(yi)− β0 − β1xi)
2

Conclusions

1. Transforming the response (or the predictors) might help with violated
assumptions

2. It makes the model less interpretable.

6.2 Multiple Linear Regression

Suppose we have p predictors.

y = β0 + β1x1 + . . .+ βpxp + e

where e ∼ N(0,σ2)

y =

󰀵

󰀹󰀷
y1
...
yn

󰀶

󰀺󰀸 , X =

󰀵

󰀹󰀷
1 x11 . . . x1p
...

... . . .
...

1 xn1 . . . xnp

󰀶

󰀺󰀸 ,β =

󰀵

󰀹󰀹󰀹󰀷

β0
β1
...
βp

󰀶

󰀺󰀺󰀺󰀸

Matrix notation:
y = Xβ + e

where e ∼ N(0, Iσ2) (a vector of independent normal variables) Therefore,

y ∼ N(Xβ, Iσ2)

Inference

l(θ|xi) = −n

2
log(2π)− n log(σ)− 1

2σ2
(y−Xβ)T (y−Xβ)

which leads to
β̂ = (XTX)−1XTy
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6.3 Dummy variables

A set of binary variables to represent a categorical variable. Allows to fit a
parameter for every possible categories of a categorical variable.

Model - 2 groups Fit a linear regression:

y = β0 + β1x+ e

where e ∼ N(0,σ2)
y ∼ N(β0 + β1x,σ

2)

This is a model that consists only two different intercepts, no slope.

Inference

E(y) =

󰀫
β0 if x = 0

β0 + β1 if x = 1

H0 : β1 = 0

Applying t-test, this is exactly same to lecture 2.

Model - 3 groups
y = β0 + β1x1 + β2x2 + e

where e ∼ N(0,σ2)

Inference

E(y) =

󰀻
󰁁󰀿

󰁁󰀽

β0 for Group A

β0 + β1 for Group B

β0 + β2 for Group C

H0 : β1 = β2 = 0 for testing if all groups are the same; H0 : β1 = 0 for
testing if Group B is same as Group A.

7 May 30th - Interactions and multiple linear re-
gression assumptions

7.1 Interactions

Definition Interaction is the effect of predictor x1 on the effect of predictor
x2 on y. With the interaction term, the linear regression model becomes

y = β0 + β1x1 + β2x2 + β1,2x1x2 + e
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where e ∼ N(0, 1)

Remarks As x1 varies,

1. the effect of x2 on y is different.

2. the relationship between x2 and y is different.

Interaction between two categorical predictors =⇒ every combination are
categories with respective effects
Interaction between a categorical predictor and a numerical predictor =⇒
different intercepts and different slopes

Example: numerical and categorical Suppose x1 is numerical, x2 is
categorical.
Then for a fixed x1,

E(y) =

󰀫
β0 + β1x1 if x2 = 0

(β0 + β2) + (β1 + β1,2x2) if x2 = 1

Now β2 indicates difference in intercept and β1,2 indicates difference in slope
(interaction)

Example: categorical and categorical β1,2 allow for a different effect
from change of predictor 1 depending on the value of predictor 2.

Example: numerical and numerical More complicated.
The slope and intercept of x1 is different across different values of x2.

Remarks The model is completely wrong without the interaction term.But
interaction terms make the number of parameters explode quickly. (p pre-
dictors =⇒

󰀃
p
2

󰀄
interaction terms)

7.2 Polynomial fit

1. Can be understood as a special case of interactions.

2. Can also solve the issue of observable pattern in the residuals

y = β0 + β1x+ β2x
2
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7.3 Model Checking

7.3.1 Collinearity

Correlation

ρX,Y =
Cov(X,Y )󰁳

V ar(X)V ar(Y )

range: [−1, 1].
when ρ = 1/− 1, we call it ”perfect correlation”.

Theorem ρ = ±1 iff P (Y = a+ bX) = 1 for some constants a and b.
proof:
Rice p143.

Collinearity If two variables are perfectly correlated, it implies a perfect
increasing(decreasing) linear relationship (xi = a + bxj). This implies that
det(X) = 0 = det(XTX) = 0.
=⇒ XTX not invertible
=⇒ β̂ = (XTX)−1XTy does not exist
=⇒ perfect correlation should not happen.
We also do not want a correlation close to -1 or 1, since the variance of β̂
would be extremely large.

Checking for collinearity

1. Look at the correlation matrix of the predictors. Large pairwise cor-
relation indicates a problem.

2. Build a regression model for xi as response on all other predictors to
assess R2

i . High R2
i (close to 1) indicates a problem.

3. Look at the eigenvalues of XTX. Small eigenvalues indicates a prob-
lem.

Variance Inflating Factor (VIF)

V ar(β̂j) =
1

1−R2
j

× σ2

(n− 1)SSXj

1
1−R2

j
are defined as the VIF.
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Remarks If the variable Xj is uncorrelated then VIF = 1

8 June 6th - Model selection and variable selection

8.1 Big Data

Properties Big data usually includes datasets with sizes beyond the abil-
ity of commonly used software tools.

1. Volume/Tall data: Large number of observations (large n)

2. Wide data: Large number of predictors (large p)

3. Variety: Multiple styles of data from texts to images to audio and
video files.

4. Velocity: The speed at which the data is generated.

Challenges

1. Data storage

2. Data analysis

3. Data visualization

4. Information privacy

8.1.1 Large number of predictors

We have a large number of predictors when we

1. have a large number of parameters

2. want to investigate many interaction terms and interaction of high
order

3. want to add multiple polynomial terms
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Why is it a problem ?

1. It reduces interpretation
”The simplest is best”. it is easier to explain a simpler model. In order
to get the big picture, we are willing to sacrifice small details.

2. It increases the variance of the estimates

s2 =

n󰁛

i=1

(yi − ŷi)
2/(n− (p+ 1))

3. It is more prone to overfitting.
More parameters increase the detriment of generalization abilities.

4. It increases the chances of collinearity issues. Too many similar infor-
mation.

8.2 Overfitting

Definition 8.2.1 Overfitting happens when we detect a pattern in the
data set that does not exist for new observations.

Definition 8.2.2 Poor performances of the model on non-observed points.

Remarks We say that a model overfits when it offers poor generalization
abilities.

Performance Metric We can observe symptoms of overfitting by select-
ing a performance metric and comparing its value on the training set to its
value on the test set as we change the model complexity.
Example:

1. Mean Squared Error (MSE)

2. Maximum Likelihood (MLE)

3. R2 coefficient

4. log-likelihood
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8.3 Variable Selection

We could select the set of variables that maximizes the likelihood or the
R2 coefficient. But to prevent overfitting, we penalizes for high number of
parameters.

Adjusted R2 Recall that

R2 =
SSreg

SST
= 1− SSE

SST

R2-adjusted includes a penalty per parameter:

AdjustedR2 = 1− SSE/(n− p− 1)

SST/(n− 1)

Remarks A large Adjusted R2 indicates a good improvement over ȳ.

Akaike information criterion (AIC) The AIC is a likelihood-based
metric with a penalty for the number of parameters.

AIC = 2p− 2I

where p = number of parameters and I = log-likelihood of the current model.

Remarks The smaller the AIC, the better the model is.

Bayesian information criterion (BIC) The BIC is also a likelihood-
based metric with a penalty for the number of parameters.

BIC = p log n− 2I

where p = number of parameters and I = log-likelihood of the current model.

Remarks The smaller the BIC, the better the model is.

AIC vs BIC

1. BIC has a stronger penalty for the number of parameter.

2. Sometimes BIC leads to selecting an underdeveloped model but AIC
leads to selecting a model that overfits.
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Variable Selection If we have p predictors, it would lead to 2p different
models. It might be reasonable to fit all of the 2p models and select the one
with the highest adjusted R2 of lowest AIC/BIC.

Hierarchical models Start with only x, then include x2 and compare the
two models with one of our metrics. We can increase the order of the model
as long as the adjusted R2 (AIC/BIC) keeps increasing (decreasing) or as
long as the added terms are significant.

Forward Selection Forward Selection is a stepwise subset technique that
starts with the simplest model (no predictors) and sequentially add predic-
tors to the model. At every step, for all predictors that are not in the model,
we check their p-value if they were added to the model and add the predic-
tor that would have the smallest p-value. We stop the process when R2

(AIC/BIC) decreases (increases) or when all parameters were added to the
model.

Backward Elimination Backward elimination start with all of the possi-
ble predictors. At every step, for all predictors in the model, we take out the
predictor with the largest p-value. We stop the process when R2 (AIC/BIC)
decreases (increases) or when all parameters were taken out of the model.

Advantages These two technique share similar pros:

1. They are easy to use

2. They are intuitive

3. They are computationally cheap (they are both a lot cheaper than
looking through all subsets)

Weaknesses

1. They don’t use p-values appropriately

2. By testing model sequentially we might stop before finding the best
model

3. The selection procedure disturbs inference and predicton
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Post-selection inference The selection process changes the properties of
the estimators as well as the standard inferential procedures (such as tests
and confidence intervals). The regression coefficients obtained after variable
selection are biased.

1. The p-values are usually much smaller.

2. And the t-statistics and F-statistic can be misleading.

9 June 11th - Ridge and Lasso regression

9.1 Principal Component Analysis (PCA)

A reparametrization of the current system in order to create uncorrelated
predictors.
We project the predictors onto an orthogonal space.

Remarks

1. It completely solves the collinearity problem of any predictor set

2. Reduces number of variables to keep the variance low and chances of
overfitting low

3. It makes the interpretation even harder.

4. This transformation is extremely simple and fast

Steps

1. Ideally we would like to do a projection that keeps observations as
distinguishable as possible. We want to maximize the variance of the
new vectors.

2. Define S as the observed covariance matrix:

S =

󰀵

󰀹󰀷

󰁓n
i=1(xi,1 − x̄1)

2 . . .
󰁓n

i=1(xi,1 − x̄1)(xi,p − x̄p)
. . .󰁓n

i=1(xi,p − x̄p)(xi,1 − x̄1) . . .
󰁓n

i=1(xi,p − x̄p)
2

󰀶

󰀺󰀸

3. With Z = Xu where Z is our 1d space and up×1 is the projection
vector. We want u to be a direction in the original predictor space, so
define u as a vector of norm 1.
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4. Since the V ar(z) = uTSu, we do the maximization problem using
Lagrange multipliers with one constraint:

󰀫
Maximize uTSu

Subject to uTu = 1

5. This leads to
Su = λu

which implies that λ is an eigenvalue of S and u is an eigenvector of
S.

6. Left-multiply Su by uT we get uTSu = λ, thus λ is the variance of
the projected data.

7. To maximize the variance, we select u as the eigenvector associated
with the largest eigenvalue.

Generalization To generalize the process, suppose we have p predictors.
We can project the predictor matrix X on a lower dimension orthogonal
space Z with dimension m < p using a projection matrix up×m:

Zn×m = Xn×pup×m

Problem 󰀻
󰁁󰀿

󰁁󰀽

Maximize uTSu

Subject to uTu = 1

and ui’s are orthogonal

The matrix up×m consists eigenvectors associated with the m largest eigen-
values of the data correlation matrix S.
Then we can fit a linear model using Z : y = Zβ + e that we have lower
number of predictors and they are all uncorrelated.

9.2 Ridge and Lasso Regression

9.2.1 Ridge Regression

A shrinkage technique: technique that reduce the size of the parameters.



9 JUNE 11TH - RIDGE AND LASSO REGRESSION 26

Motivation We could prevent overfitting by controlling the size of the
parameters.
ȳ does not overfit. If βi = 0 for i ∈ {1, . . . , p}, then ȳ = β0. Intuitively, if
the βi’s are small, they can only affect the y so that it minimizes the chances
of overfitting.

Review We established our β̂ by minimizing sum of square error (y −
Xβ̂)T (y−Xβ̂)

Regularization One way to force small β̂ would be to minimize

n󰁛

i=1

β2
i

Thus we can establish β̂ridge as the solution of the minimization of

(y−Xβ̂)T (y−Xβ̂) + λ

n󰁛

i=1

β2
i

where λ is a hyper-parameter controlling the penalty on
󰁓n

i=1 β
2
i .

If λ = 0 then we have our regular β̂ = (XTX)−1XTy; as λ → ∞ then all of
βi’s goes to 0 and we have a model that predicts ȳ.

A constrained optimization problem The ridge regression can be ex-
pressed as a constrained optimization problem. In fact:

β̂ridge =

󰀻
󰀿

󰀽
argmin

β

󰁓n
i=1(yi − (β0 + (

󰁓p
j=1 βjxi,j))

2

Subject to
󰁓p

j=1 β
2
j ≤ t

Just know that there exist a one-to-one correspondence between λ and t,
and that both of the formulations lead to the same solution.

Parameter tuning for λ Establish a huge list of possible λs. Then try
them all and select one that best result on the validation set.

Remarks The model does NOT reduce the number of parameters, thus
does not improve interpretability.
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Figure 1: x-axis: 1
λ . As the penalty decrease, the parameters converge to

LSE.

9.2.2 Lasso Regression

Actually enforce sparsity: reduce some of the parameters. But this method is
non-convex, so it is much more complicated to solve and we cannot compute
the exact solution.

Regularization We want to minimize

n󰁛

i=1

(yi − (β0 +

p󰁛

j=1

βjxi,j))
2 + λ

p󰁛

j=1

|βj |

A constrained optimization problem

β̂lasso =

󰀻
󰀿

󰀽
argmin

β

󰁓n
i=1(yi − (β0 +

󰁓p
j=1 βjxi,j))

2

subject to
󰁓p

j=1 |βj | ≤ t

There exist a one-to-one correspondence between λ and t, and that both of
the formulations lead to the same solution.
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Figure 2: x-axis: 1
λ . As the penalty decrease, the parameters converge to

LSE.

Remarks Computing the lasso solution is a quadratic programming prob-
lem, but efficient algorithms are available for computing the entire path of
solutions as λ varies with the same computational cost as for ridge regres-
sion.

Limitations

1. If p > n, the lasso selects at most n variables. (The number of selected
genes is bounded by the number of samples)

2. Grouped variables: the lasso fails to do grouped selection. It tends to
select one variable from a group and ignore the others.

9.2.3 Ridge v.s. Lasso

related R packages The GLMnet and Elastic net packages in R are freely
available.

Post-selection inference Post-selection inference is still a problem prob-
lem when using these techniques. In fact there is not even a distribution in
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Figure 3: Contour of the prediction errors and Regularizations. Different
constraints lead to different contour shapes. Notice that lasso always has
the smallest error at one of the axis, thus induces sparsity.

the model yet. SelectiveInference package in R allow to do valid inference
for parameters that were selected using Elastic net.

9.2.4 Elastic Net Regularization

β̂ = argmin
β

|y−Xβ|2 + λ2|β|2 + λ1|β|

Properties

1. Removes the limitation on the number of selected variables

2. Encourages grouping effect

3. Stabilizes the l1 regularization path
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Figure 4: Singularities at the vertexes (necessary for sparsity) and strict
convex edges (grouping). The strength of convexity varies with α

Lasso v.s. Elastic Net
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Figure 5: Elastic Net encourages group effect.


